Contents

Practical Anaesthesia 2

Creatinine Clearance 2

By Disease .. 3

Chronic Renal Failure 3

Acute Renal Failure 6

By Surgery ... 8

Renal Transplantation 8

Anaesthesia in Patient with Renal Transplant 9

Living Donor Transplant Nephrectomy 9

Fistula Formation 9

Peritoneal Dialysis 9
Creatinine Clearance

- pre-op renal dysfunction = indep RF for morbidity & mortality
- creatinine =
 ‣ product of skeletal mm metabolism
 ‣ undergoes limited renal tubular secretion
 ‣ clearance = GFR
- normal GFR = 125ml/min
- GFR ↓s by 1%/yr after 30yrs old
- plasma creatinine = rectangular hyperbolic relationship with creatinine clearance:
 ‣ GFR must be ↓50% before ↑plasma creatinine
 ‣ small changes in serum creatinine = large change in GFR
 ↳ ↓ is v sensitive test
- low mm mass ⇒ little creatinine to clear ↓ normal plasma creatinine might mean abnormal GFR
- Creatinine clearance estimated using Cockcroft-Gault formula

\[
\text{Creatinine clearance} = \frac{(140 - \text{age}) \times \text{weight (kg)}}{0.814 \times \text{serum creatinine} \times 0.85} \quad (\text{micromoles/L})
\]
By Disease

Chronic Renal Failure

Preoperative
- CRF classification
 ‣ stage 1 = normal GFR but other evidence of renal damage
 ‣ stage 2 = GFR 60-90 and other evidence of renal damage
 ‣ stage 3 = 30-60
 ‣ stage 4 = 15-30
 ‣ stage 5 = <15ml/min

- Dialysis <15mL/min
- ESRF <5mL/min
- multi-system disease
- causes:
 1. DM - 30%
 2. HT - 24%
 3. GN - 17%
 4. chronic pyelonephritis - 5%
 5. polycystic renal disease - 4%
 6. unknown - 20%

HISTORY
- when diagnosed
- type of dialysis (frequency, line or fistula)
- residual urine output
- last dialysis
- target weight
- thorough review of symptoms
- diagnosis
- chart review
- medications
- co-morbidities: DM, IHD, CVA, LVF, valve disease, pericardial disease
- complications:
 CVS: IHD, HT, cardiac failure, fistulae, pericardial effusions, access problems
 RESP: fluid overload
 CNS: uraemia, encephalopathy
 HAEM: anaemia, platelet dysfunction
 ABDO: peritonitis
 MUSCULO: gout, osteodystropy
 METABOLIC: uraemia, hypocalcaemia, hyperphosphataemia,
- transplant problems: rejection, infection, complications of immunosuppression
- functional limitation

EXAMINATION
CVS: fluid overload/hypovolaemia, BP, weight (+ ideal body weight), fistulae or access line integrity, oedema
RESP: fluid overload
CNS: peripheral neuropathy, GCS
GU: abdominal examination (kidneys and transplant)

INVESTIGATIONS
- FBC – normochromic, normochromic, normocytic anaemia (aim for Hb 80-100), platelets
 ▪↓EPO, ↓rbc survival & GI losses
- Bloods:
 ▪K+ - if >6 need preop dialysis
 ▪low or high Na+ (low salt diet)
 ▪urea -> platelet dysfunction
 ▪hypocalcaemia 2nd to ↓vit D
 ▪hyperphosphataemia
 ▪metabolic acidosis - esp pre dialysis 2nd to ↓HCO3
 ▪↑Mg as don’t excrete
 ▪↑aluminium - from phosphate binders
- Acoag’s
 ▪usually normal
 ▪note uraemia ⇒ impaired platelets ⇒ ↑ed bleeding time
- ABG: metabolic acidosis
- CXR: pericarditis, catheter position
- ECG:

MANAGEMENT
- allow 4 to 6 hours between haemodialysis and surgery (equilibration time and elimination of heparin)
- urgent dialysis indications = uraemia, hyperkalaemia, acidosis, fluid overload
- platelet dysfunction -
 ▪not improved by platelet transfusion
 ▪give DDAVP 0.3mcg/kg IV in 30mls NSL over 30min
- may need ICU
- liaise closely with renal team

Intraoperative
- don’t muck around with fistula or forearm (no IV’s or NIBP)
 ▪wrap in softban
- cannulate other arm in dorsum of hand (in case future fistula on that side)
- use dialysis catheters as IV access as last resort
- maintain normovolaemia
- invasive monitoring can be useful (avoid femoral if possible future transplant)
- K management:
 ▪balanced crystalloid better than NSL even though has K (less acid load)
 ▪avoid ↑CO2, ↓temp
 ▪sux increases K+ by 0.5mmol/L
- reflux care (autonomic dysfunction) - high dose roc & suggamadex (if GFR >30)
- asepsis - humoral & cell mediated immunity is inhibited
- staff protection (Hep B and C common)
- careful use of analgesics (fentanyl, morphine, LA, paracetamol – cautious dosing)
- decision to place epidural done with caution

Postoperative
- careful fluid balance
- good analgesia
- avoid nephrotoxic agents

Drugs
- general principles:
loading doses unchanged -> reduce maintenance doses or frequency
↓ albumin & acidosis ⇒ ↑ free drug in highly protein bound drugs

- to avoid:
 ‣ analgesics -> tramadol, pethidine, NSAIDS
 ‣ volatiles -> enflurane (prolonged use of sevo c/o inorganic fluoride ion production)
 ‣ NDNMBD -> vecuronium, rocuronium, pancuronium
- analgesics:
 ‣ codeine half life x6 longer
 ‣ oxycodone
 - has active metabolites but ↓ ed activity compared to M6G
 - ↓ dose & prolonged intervals
 ‣ tramadol - active metabolites - ↓ dose & avoid in ESRF
- inductions agents:
 ‣ ↓30%
 ‣ ↑ dose of propofol required
- volatiles:
 ‣ sevo ok for induction
 ‣ will produce inorganic fluoride ions if >4MAC hours - avoid prolonged use
- relaxants:
 ‣ roc & vec will have prolonged action for same dose
 ‣ sugammadex
 - excreted unchanged in urine
 - not recommended if GFR <30ml/min
 - unpredictably removed by dialysis
 ‣ excretion of neostigmine & glyco prolonged in CRF
- LAs:
 ‣ duration of action is ↓ ed
 ‣ ↓ max dose by 25% due to ↓ PPB & ↓ seizure threshold
- Antibiotics:
 ‣ normal loading dose, with ↓ ed dosing/maintenance dose

<table>
<thead>
<tr>
<th>Drugs safe in CRF</th>
<th>Drugs safe in limited or reduced doses</th>
<th>Drugs contraindicated in CRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premedication</td>
<td>Lormetazepam, midazolam, temazepam</td>
<td></td>
</tr>
<tr>
<td>Induction</td>
<td>Propofol</td>
<td>Ketamine, etomidate, thiopental</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Isofluorane, desflurane, halothane, propofol</td>
<td>Sevoflurane, Enflurane</td>
</tr>
<tr>
<td>Muscle relaxants</td>
<td>Suxamethonium, atracurium, cisatracurium</td>
<td>Vecuronium, rocuronium</td>
</tr>
<tr>
<td>Opioids</td>
<td>Alfentanil, remifentanil</td>
<td>Fentanyl, morphine, oxycodone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pethidine, codeine, tramadol</td>
</tr>
<tr>
<td>Local anaesthetics</td>
<td>Bupivacaine, lidocaine (reduce dose by 25%)</td>
<td></td>
</tr>
<tr>
<td>Analgesics</td>
<td>Paracetamol</td>
<td>NSAIDs</td>
</tr>
</tbody>
</table>
Acute Renal Failure

Preoperative
- risk factors:
 1. pre-existing problems (renal compromise, DM, advanced age)
 2. perioperative (sepsis, hypovolaemia)
 3. drugs (NSAIDS, ACE I, diuretics, lithium, chemo, contrast)
 4. trauma (rhabo)
 5. surgery (hepatorenal syndrome, vascular, renal)
 6. abdominal compartment syndrome
 7. urinary obstruction

HISTORY
- think causes:
 ‣ pre renal
 ‣ intra renal
 ‣ post renal
- ask about RF's as above
- symptoms of overload
- symptoms of hypovolaemia

EXAMINATION
- fluid review
- hourly urine output

INVESTIGATIONS
- urinary electrolytes can help differentiate:
 ‣ hypoperfusion = Na+ <20mmol/L, urine osmolality >500mosmol/kg
 ‣ ATN = Na+ >20mmol/L, urine osmolality <500mosmol/kg
 ⇝ meaningless if diuretics been given
- creatinine & urea (less specific)
 ↳ also ↑ in dehydration, GI bleed, sepsis, excessive diuretics
- K+
- CrCl (24 hour urine required)
- renal U/S (r/o obstruction)

MANAGEMENT
- maintain U/O > 0.5ml/kg/hr
- rehydrate
- invasive monitoring
- MAP >70 (>85 in hypertensive)
- inotropes as required
- if full & normotensive -> diuretics can be tried
 ⇝ furosemide 250mg over 1hr
- mannitol 0.5g/kg IV
- renal consult

Intraoperative
- same as above

Postoperative
- avoid nephrotoxics
- avoid dehydration
- close monitoring of U/O
- IAP measurement (may need laparosotomy if intra-abdo HTN)
Renal Transplantation

Renal Transplant Criteria (NZ)
- > 80% survival @ two years from all causes
- age < 65
- BMI < 35
- solid organ cancer (> 2 year disease free or longer)
- no hepatitis B or C
- rigorous IHD assessment and optimization

Preoperative

HISTORY
- when
- indication
- immunosuppression drugs
- chart review
- co-morbidities:

EXAMINATION
- fluid status
- site of donor kidney

INVESTIGATIONS
- U+E: Cr may be normal but renal function isn’t (only 50% of nephrons work)

MANAGEMENT
- close liaison with renal team about perioperative plan
- optimise prior to surgery

Intraoperative
- strict asepsis
- avoid hypovolaemia and hypotension
- avoid nephrotoxic agents
- careful positioning during operation c/o damage to transplant
- steroid (methylprednisone) prior to reperfusion
- Aim CVP 10-12 - may need 60-100ml/kg of fluid
- evidence for dopamine, mannitol & frusemide is sparse

Postoperative
- aggressive monitoring
- fluid = 30ml + losses +UO/hr
- UO >0.5ml/kg/hr
 - early onset urine output = directly correlated with graft survival
- MDT input

COMPLICATIONS
Early
- infection
- bleeding
- pain
- renal failure and graft maintenance

Late
- rejection (hypertension, proteinuria and worsening renal function)
- immunosuppression
- lymphoma

Anaesthesia in Patient with Renal Transplant
- serum creatinine may be normal but renal function & creatinine clearance is not normal
- transplanted kidney is never normal cos:
 ‣ half functioning nephrons
 ‣ ciclosporin (immunosupression) ↓ function
- strict asepsis
- d/w nephrologist ⟃ re continuing immunosupression throughout
- maintain CVS to ensure kidney perfusion
- avoid nephrotoxic drugs ie NSAIDs
- careful prone positioning to avoid transplant problems

Living Donor Transplant Nephrectomy
- best results for transplant
- donor mortality = 0.02%
- laparoscopic in L lateral
- post op pain an issue ⟅ PCA, wound catheter, PVB
- post op renal function improves to ~75% of normal in time

Fistula Formation
- Anaesthesia based on location:
 ‣ brachiobasilic fistula = local
 ‣ brachiocephalic fistula = supraclavicular/axillary
- avoid hypotension ⟅ thrombosis
- fistula used 3-4weeks post dialysis

Peritoneal Dialysis
- requires placement of catheter into peritoneum:
 ‣ temporary (hard)
 ‣ permanent (soft) = Tenckhoff
- insertions requires mini-laparotomy