Contents

College Requirements for Blocks3

Block Mnemonics ..4
 Good & Bad Of Regional Block 4
 Risks 5
 Nerve Anatomy 5

Nerve Injury ...6
 Local Anaesthetic Choice 8
 Block Testing 8

Nerve Stimulators ..9

Tourniquet Pain ...9

Upper Limb ..10
 Brachial Plexus 10
 Axillary Nerve (C5,6) 11
 Radial Nerve (C5-T1) 11
 Musculocutaneous Nerve (C5,6,7) 13
 Median Nerve (C5-T1) 14
 Ulnar Nerve (C8,T1) 15
 Suprascapular Nerve 16
 Intercostal Brachial Nerve 16

Regional Upper Limb Blocks16
 Comparison 17
 Interscalene 17
 Supraclavicular Block 18
 Infraclavicular Block 20
 Axillary Block 21
 Forearm Blocks 22
 Biers Block 22

Abdomen Anatomy ..23

Regional Blocks Abdomen23
 Transversus Abdominis Plane Block 23
 Inguinal Field Block 24
Rectus Sheath Block 25

Lower Limb ..26
Lumbar Plexus 26
Femoral Nerve 27
Obturator Nerve 27
Lumbosacral Plexus 28
Sciatic Nerve 29
Tibial Nerve (L4-S3) 29
Common Peroneal Nerve (L4-S2) 30
Cutaneous Supply to Lower Limb 31

Lower Limb Blocks ..32
Lumbar Plexus Block 32
Fascia Iliaca Block 33
Femoral Nerve Block 33
Lateral Cutaneous Nerve of Thigh 34
Sciatic Nerve Block 35
Subgluteal Approach 35
Anterior Sciatic Block 36
Popliteal Sciatic Block 37
Saphenous Nerve/Adductor Canal Block 38
Ankle Blocks 39

Trunk Blocks ..40
Anatomy of Nerve Supply to Thorax & Abdomen 40
Superficial Cervical Plexus Block 40
Intercostal Block 41
Thoracic Paravetebral Block 42
Neuraxial Techniques 43
Vertebral Anatomy 45
Epidural Analgesia 47
Spinal Anaesthesia 49
Complications of Neuraxial Block 50

Coagulation Disorders ..52
Drugs used in Neuraxial & Deep blocks 52
Coagulation Disorders 53

Evidence For Regional ..53
College Requirements for Blocks

- Informed consent should include discussion of risks including:
 - Nerve injury
 - Drug toxicity
 - Haemodynamic changes
 - Bleeding or bruising
 - Infection
 - Failure of technique
 - Specific risk eg Post dural puncture headache, pneumothorax

- Problems with informed consent in labour ward of PACU understood
- Should have qualified help when doing technique - tech or midwife
- Preparation:
 - Need full infection control
 - Skin prep must be dried to avoid contaminating equipment or drugs
 - Coagulation status must be assessed before all blocks
 - IV access prior & maintained during duration of technique
- Monitoring:
 - During insertion:
 - ECG, SPo2, RR, conscious state, frequent bp
 - Continue that level until 30mins after vitals stable
 - Person doing block must be around to assess satisfaction of block or until immediate complications have passed
 - May then delegate responsibility to other MDT members eg pain team
- Full record keeping incl prescription charting
- Equipment:
 - Catheters & giving sets must be well labelled and specifically a diff colour
 - Dedicated pumps with set protocols to avoid OD
- Post procedure r/v:
 - Local protocols to r/v for complications, effectiveness, side effects, timing of removal
 - Daily r/vs
 - MRI preferred to CT for nerve injury
 - Remove catheters if suspected infection and send for culture
- Late complications of neuraxial analgesia:
 - Postdural puncture headache
 - Epidural abscess
 - Epidural haematoma
 - Spinal cord or nerve root compression
Block Mnemonics

P - osition
P - reparation
A - natomy
L - andmarks
E - exection
S - ide effects

C onsent
A ssistant
L ines
M onitoring - ECG/SpO2/NIBP
S edation - conscious sedation, titratable midaz
O xygen
B lock trolley
E mergency drugs/Equipment
R esus

P robe
L ocal
A dditives
N erve
S timulator

A range
C lean & Aseptic technique - full sterile technique for indwelling line; single shot use sterile sheath & no touch technique technique

T ime out - 2 people, site, marking, consent
I maging
O ptimise image - depth, gain, frequency, focus
N ote relevant structures
S urround target with local

Good & Bad Of Regional Block

Advantages
- best possible pain relief
- ↓N&V by 90%
- ↓resp complications - esp if pre-existing pulmon disease
- quicker return of bowel function
- ↓blood loss
- ↓VTE risk - LMWH is just as good
- Better AV fistula maturation (upper limb)
- ↓cerebral desat in beach chair
- ↓chronic pain (epidural & PVB) in amputation & thoracotomy
- ??↓cancer recurrence
- ↓POCD - early, not at 3/12

Controversial
- ↓cardiac risk - MASTERS
- Unknown effect on functional recovery

Evidence for Use of Ultrasound
- ↓LAST
- ↓diaphragm paralysis in interscalene/supraclav
- faster to perform with less passes, and greater success rate
- quicker to perform and right level with neuraxial pre-scan

Risks

- **Physical:**
 - block failure - 10%
 - infection
 - bleeding
 - PDPH
 - Hypotension
 - neurological injury -
 - 1:200 temp nerve damage of which 95% would resolve in 1-2 weeks
 - 1:5000 beyond 6 months
- **Pharmacological:**
 - allergy
 - LAST:
 - Seizure 1:10,000
 - arrest 0:33,000
- **Physiological:**
 - neuro recovery
- **Recovery:**
 - care insensate limb
 - plan for transition from block to sensate limb with analgesia

Nerve Anatomy
Nerve Injury

- surgical cause of neuro injury much higher than regional
- risks:
 ‣ temp nerve damage (neurapraxia) = 1:100 - 200
 ‣ permanent nerve damage = 1:5,000
 ‣ varies by block e.g.:
 - supraclavicular = 0.03%
 - femoral = 0.3%
 - interscalene = 3%
- but highly variable:
 ‣ LM technique vs US
 ‣ which nerve block
 ‣ age
 ‣ pregnant
 ‣ co-morbidities
- intra-fascicular injection:
 ‣ high pressures within nerve \(\Rightarrow\) ischaemia
 ‣ signs:
 - high injection pressure
 - pain on injection
 - 0.2mA with dex on nerve stim
 - swelling of nerve on US with injection
 ‣ stop!
- other causes of nerve ischaemia:
 ‣ hypotension
 ‣ vascular occlusion
 ‣ haematoma pressure
 ‣ poor positioning
 ‣ stretching or direct injury during surgery
 ‣ position of pt limbs
- UL blocks have higher proportion of injury
 ‣ highest injury risk = interscalene
- low risk groups = obstetrics & paeds
- high risk groups = obese, elderly with comorbidities
- Management of nerve damage:
 ‣ early recognition
 ‣ ref to neurologist
 ‣ investigation: nerve conduction studies, MRI, EMG
 ‣ ask about profession & hand dominance

Treating Injury

- red flags:
 ‣ severe or progressive worsening pain
 ‣ complete absence of sensation
- Treat based on severity:
 ‣ mild signs eg partial sensation loss only: reassure + r/v in 2-3 week in clinic
 ‣ ongoing symptoms - nerve conduction studies in 14-21 days
- If unexplained painful deficit \(\approx\) post op inflammatory neuropathy \(\Rightarrow\) ref neurologist

Ways to Decrease Neurological Complications

- need to avoid penetrating the perineurium & entering the fascicle
- pain on injection:
 ‣ historical teaching
 ‣ evidence to suggest not a relevant factor
subjective reporting
- especially poor if co-morbidities eg diabetes

- nerve stimulation:
 - use to r/o intrafascicle location
 - use 5% dextrose to hydro-dilate & nerve stim current of 0.2mA

- ultrasonography (no evidence to support this helping):
 - operator dependant
 - unable to differentiate between intrafascicular or extrafascicular

- blunt needles

- injection pressure monitoring:
 - low resistance to injection \approx extrafascicular location of needle tip (<20psi)
 - use inline devices or compressed air technique
 - highly sensitive but poor specificity ie low pressure = extrafascicular
 \Rightarrow but may be other causes of high pressure eg blocked needle

- awake vs asleep debate:
 - no official ANZCA position on this except adequately trained practitioner
 - awake pro’s:
 - nerve needle contact painful
 - early signs of LAST
 - asleep pro’s:
 - no evidence dangerous
 - higher pt satisfaction
 - better teaching
 - see needle tip on US, seen neuraxial swelling, use nerve stim to avoid intra-neural injection
 - asleep cons:
 - task fixation
 - no pain feedback
 - epidural is easier upright

\Rightarrow general guidance to avoid asleep injections if can.
\Rightarrow inter scalene likely awake
\Rightarrow use sedation & US :: not painful or disturbing

Natural Hx of PostOperative Neuropathy
- 95% will resolve within 4-6 weeks - most within 1st week
- 99% sensory changes resolve in 1st year
- refer for electrophysiologic testing if any symptoms other than sensory or neuropathy severe or long lasting:
 - EMG
 - nerve conduction studies
Local Anaesthetic Choice

- ropivacaine 0.75% (unless very short surgery use lignocaine)
- do not put any additives in mixture
 - off license use of Dex is emerging to prolong block 4mg Dex in 20mls for single shot
- variables:
 - onset = concentration
 - duration = total dose

<table>
<thead>
<tr>
<th>Aim</th>
<th>Lignocaine</th>
<th>Ropivacaine</th>
<th>Bupivacaine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical Anaesthesia</td>
<td>2%</td>
<td>0.75%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Surgical Analgesia</td>
<td>1%</td>
<td>0.375-0.5%</td>
<td>0.25%</td>
</tr>
<tr>
<td>Post-op analgesia</td>
<td>-</td>
<td>0.2%</td>
<td>0.125%</td>
</tr>
</tbody>
</table>

- Catheter: use 0.2% ropiv:
 - Inter scalene 2ml/hr with 2ml hourly pt bolus
 - Other blocks 5ml/hr with 5ml hourly pt bolus

Block Testing

- In essence check for sensation change in distribution of structure blocked
- Possible grading scale:

Motor
- 0 = none
- 1 = twitch
- 2 = weak against resistance
- 3 = full power

Sens to ice
- 0 = nil
- 1 = faint touch
- 2 = able but decr compared to other side
- 3 = full sens
Nerve Stimulators

Principle
- electrical current applied externally to nerve will induce membrane potential to reach threshold for depolarisation
- depolarisation \(\Rightarrow\) generation of action potential
- type of fibre effected determines response:
 - sensory \(\Rightarrow\) tingling/pain
 - motor \(\Rightarrow\) contraction of effector mm
- duration of stimulus required to cause depolarisation depends on type of nerve fibre allowing specificity:
 - \(A_\alpha =\) motor \(=\) 0.05-0.1ms
 - \(Ad =\) pain & temp \(=\) 0.15ms

Technique
- at a given current the current required to trigger mm contraction is proportional to the distance between needle tip and nerve fibre
- to create motor response:
 - use duration of 0.05-1ms
 - pulse frequency 1-2Hz
 - amplitude range 0-1mA
- hydro-dissection fluid is important:
 - saline conducts current \(\Rightarrow\) wider field of stimulation
 - 5% glucose does not conduct current ie stimulation immediately adjacent to tip only
- can start with large amplitude to gain general area of nerve
- then need to ↓amplitude to pinpoint:
 - [saline] target for ideal position is contraction with amplitude of 0.2-0.3mA
 - lower amplitude risks nerve damage
 - [glucose] 0.2mA would indicate intraneurial placement of needle tip - should reposition prior to LA

Needles
- general type of needle = monopolar
- needle insulated apart from small section on tip
- place neutral electrode to complete circuit
- needle tips:
 - short bevelled needle 45deg may ↓chance of nerve lesions

Tourniquet Pain
- blocks will variably cover tourniquet pain
- ischaemic pain is very difficult to mask completely \(\therefore\) even with best block pt unlikely to be able to fully tolerate prolonged tourniquet
- procedural sedation can help if problems \(\Rightarrow\) pt needs to be fully fasted as per regular guidelines
Upper Limb

Brachial Plexus
Motor Nerves
- musculocutaneous nerve - C5,6,7
- median nerve - C5,6,7,8,1
- axillary nerve - C5,6
- radial nerve, C5,6,7,8,1
- ulnar nerve, C8,T1
- long thoracic nerve - C5,6,7

[thumbs up = extension]

Axillary Nerve (C5,6)

Route:
- Through axillary space
- pass through quadrilateral space

Divisions
- divides into:
 › anterior:
 - winds round surgical neck humerus
 - supply ⇒
 • ant & mid deltoide
 • skin over lower half of deltoide
 › posterior:
 - supply:
 • post deltoide
 • teres minor
 • few fibres skin over lat upper arm

Supply

<table>
<thead>
<tr>
<th></th>
<th>Axillary</th>
<th>Ant division</th>
<th>Post division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articular</td>
<td>shld</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensation</td>
<td>skin lower ½ deltoide</td>
<td>upper ¼ deltoide</td>
<td></td>
</tr>
<tr>
<td>Muscle</td>
<td>ant & mid deltoide</td>
<td>post deltoide teres minor</td>
<td></td>
</tr>
</tbody>
</table>

- can miss cutaneous sensation around elbow

Clinical
- ↓ abduction of arm esp 15-90deg as well as weak flex/ext/rotation depending on starting position
- sensation military patch over lat deltoide lost

Radial Nerve (C5-T1)

Route
- lies post to axillary artery in axilla
- exits axilla through post wall via lower triangular space (below quadrilateral space)
- enters spiral groove of humerus
- descends obliquely between med & lat heads of triceps
- lower ½ arm pierces lat IM septum ⇒ enter anterior compartment
- runs in groove between brachialis & brachioradialis

Divisions
- in front lat epicondyle divides into
deep branch
superficial branch

Superficial Branch
- descends along anterolat of forearm
- deep to brachioradialis & lat to radial artery
- distal ⅓ forearm pierces deep fascia → superficial

Deep (Posterior) Branch
- entirely mm & articular
- enters post compartment through 2 heads of supinator
- descends between deep & superficial forearm extensors
- supplies all mm in extensor forearm compartment
- @ lower forearm lies on IO membrane

Supply

<table>
<thead>
<tr>
<th>Articular</th>
<th>Radial</th>
<th>Superficial B.</th>
<th>Deep B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articular</td>
<td>elbow</td>
<td>skin post forearm</td>
<td>intercarpal joints</td>
</tr>
<tr>
<td>Sensation</td>
<td>skin post forearm</td>
<td>skin dorsum lat hand & anatomical snuff box</td>
<td></td>
</tr>
<tr>
<td>Muscle</td>
<td>3 head of triceps</td>
<td>ECRB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>anconeus</td>
<td>supinator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lat brachialis</td>
<td>all forearm extensors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>brachioradialis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECRL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical
- Axilla injury:
 - motor: loss of ext of elbow, wrist & fingers
 - sens - as above
- mid arm:
 - motor: weak supination & loss of ext hand/fingers
 - sens: loss sensation post forearm & hand as above
- below elbow:
 - motor: weakness in wrist & hand extension only (ECRL working)
 - sens: none
Musculocutaneous Nerve (C5,6,7)

Route
- lateral to axillary artery in axilla
- pierces coracobrachialis to run underneath biceps brachi on top of brachialis
- @elbow pierces deep fascia to become lat cutaneous nerve of forearm

Divisions
- lateral cutaneous nerve of forearm

Supply

<table>
<thead>
<tr>
<th></th>
<th>M/C Nerve</th>
<th>Lat Cutaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensation</td>
<td></td>
<td>lat forearm</td>
</tr>
<tr>
<td>Muscle</td>
<td>both heads biceps brachi</td>
<td>⅔ brachialis coracobrachialis</td>
</tr>
</tbody>
</table>

Clinical
- isolated injury ⇒ weakness of elbow flex & supination
Median Nerve (C5-T1)

Route
- through axilla
- under cover of biceps
- starts lat to brachial artery ⇒ crosses it lower arm to medial
- @ cubital fossa:
 - gives off ant interosseous nerve (deep median)
 - lies deep to bicipital aponeurosis
 - enters forearm through 2 heads of pronator teres
- passes under fibrous arch formed by FDS
- continues in forearm underneath FDS
- @ forearm - gives off palmar cutaneous branch
- @ wrist:
 - lies between FDS & FCR
 - enters hand under flexor retinaculum

Divisions
- ant interosseous nerve (deep branch):
 - descends on ant aspect of IO membrane
- palmar cutaneous branch:
 - does not pass through flex retinaculum

Supply

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>Ant. IO Nerve (deep)</th>
<th>Palmar cutaneous B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articular</td>
<td>ant elbow</td>
<td>- radiocarpal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- intercarpal</td>
<td></td>
</tr>
<tr>
<td>Sensation</td>
<td>- lat ½ palmar hand</td>
<td></td>
<td>- lat palmar skin</td>
</tr>
<tr>
<td></td>
<td>- lat 3 ½ digits dorsal & palmar side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle</td>
<td>- pronator teres</td>
<td></td>
<td>- FPL</td>
</tr>
<tr>
<td></td>
<td>- FCR, FDS</td>
<td></td>
<td>- lat ½ FDP</td>
</tr>
<tr>
<td></td>
<td>- palmaris longus</td>
<td></td>
<td>- pronator quadratus</td>
</tr>
<tr>
<td></td>
<td>- intrinsics of hand:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- L - umbricals (lat 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- O - opponens pollicis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- A - abductor pollicis brevis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- F - flexor pollicis brevis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical
- damage above elbow:
 - motor:
 - loss pronation of forearm
 - ape hand deformity ⇒ unable to abduct thumb or flex 1-3 digits
 - sensory loss - total loss in hand under normal distribution
- damage at forearm:
 - ant interosseous syndrome from too tight cast:
 - loss pronation forearm
 - loss flexion 1-3 digits
 - no sensory deficit
- carpal tunnel:
 - weakness in abduction & opposition of thumb
 - absence of ape hand - AbPL intact
 - sensory: numbness in digits & nail beds but normal palmar sensation
Ulnar Nerve (C8,T1)

Route
- descends lying medial to axillary artery in axilla
- continues medial to brachial artery
- @ lower arm:
 - passes back piercing IM septum
 - enters post compartment
- runs through elbow in ulna groove between med epicondyle & olecranon
- enters flexor compartment of forearm between 2 heads FCU
- Runs down lying on top FDP & under FCU
- 5cm prox to wrist splits into:
 - dorsal cutaneous branch
 - palmar branch of ulnar nerve
- palmar branch in hand splits into terminal

Divisions
- dorsal cutaneous branch:
 - passes backwards deep to FCU
 - becomes superficial through deep fascia
 - divides into 3 dorsal dig nerves on dorsum wrist/hand
- palmar branch:
 - enters hand superficial to flexor retinaculum in Guynons canal
 - in hand divides into terminal branches (deep & superficial Bs)
 - lies lat to pisiform

<table>
<thead>
<tr>
<th>Articular</th>
<th>Ulnar</th>
<th>Dorsal cutaneous</th>
<th>Superficial B.</th>
<th>Deep B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensation</td>
<td>elbow</td>
<td>- dorsal skin med ½ digits</td>
<td>- nail beds & palmar skin med ½ digits</td>
<td>wrist</td>
</tr>
<tr>
<td>Muscle</td>
<td>FCU, med ½ FDP</td>
<td>- Palmaris brevis</td>
<td>- AbDM, FDM, ODM, med 2 lumbricals, AdP, all interossei</td>
<td></td>
</tr>
</tbody>
</table>

Clinical
- Damage at elbow:
 - loss flexion 4th & 5th digits
 - claw hand deformity 4th & 5th digits at rest:
 - hyperextension of MCP joints
 - flex at IP joints
 - sens loss all aspects of ulnar nerve at hand
- Damage at wrist:
 - loss flexion 4th & 5th digit
 - claw hand as above ⇒ more prominent as ulnar half of FDP not affected ⇒ ↑ed flex at IP joints
 - sensory: no loss of sensation on dorsum of hand in ulnar distribution
- Test ulnar function:
 - interossei resistance
 - AdP - nerve twitch
 - sensation checking in hand
Suprascapular Nerve
- Comes off early in brachial plexus (roots/trunks) ⇒ innervation of shoulder
- needs interscalene to get reliable coverage

Intercostal Brachial Nerve
- not from brachial plexus ⇒ sensation into axilla
- is not relevant in tourniquet pain ie clinically irrelevant

CUTANEOUS NERVES OF UPPER LIMB

Regional Upper Limb Blocks
Comparison

<table>
<thead>
<tr>
<th>Approach</th>
<th>Indications</th>
<th>Benefits</th>
<th>Disadvantages</th>
<th>Risks/side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interscalene</td>
<td>Upper arm/Shoulder</td>
<td>Superficial, catheter</td>
<td>Misses ulna</td>
<td>Phrenic, spinal cord, horns</td>
</tr>
<tr>
<td>Supraclavicular</td>
<td>Arm + hand</td>
<td>Single shot, tourniquet</td>
<td>No catheter</td>
<td>PTX, phrenic</td>
</tr>
<tr>
<td>Infraclavicular</td>
<td>Arm + hand</td>
<td>Catheter, tourniquet</td>
<td>Deep</td>
<td>PTX</td>
</tr>
<tr>
<td>Axillary</td>
<td>Below elbow</td>
<td>Safe</td>
<td>No tourniquet, multiple passes</td>
<td>LAST</td>
</tr>
</tbody>
</table>

Interscalene

Indications
- Good for shld, humerus & elbow
- Risk of missing lower roots: might still be able to move hand

Fig. 42.4 Ultrasound image of the C5, C6, and C7 roots lying in the plane between the two scalene muscles.
SonoAnatomy
- **nerve roots** visualised lateral to carotid & IJ between scalene mms
- C5 superficial ⟹ T1.
- Often only see C5,6,7
- Below 7 may be a muscle bridge which prevents spread of LA down to T1

Method
- Sitting up, head ring, pillow under shld to be blocked
- walk up from supraclavicular
- Block low enough to just see thyroid
- use in plane for single shot (out of plane for catheter
- 20mls of 0.75% ropiv
- nerve twitch ⟹ C5 deltoid, C6 biceps

Side Effects
- phrenic nerve block - in 100% ⟹ subjective SOB
- Horners syndrome
- rLN block ⟹ hoarse voice

Complications
- vessel puncture
- PTX
- intrathecal or epidural injection
- needle damage risk to nerves which found inside middle scalene :
 ‣ dorsal scapular nerve
 ‣ long thoracic nerve

Supraclavicular Block

Indications
- best for total arm block ie elbow, forearm, wrist or hand (arm spinal)
- only poss with ultrasound
SonoAnatomy
- [trunks & divisions on US]
- Probe flat coronal straight down into bed
 - plexus falling over 1st rib
 - Start lat and move medial
 - 1st pulsation is subclavian artery
 - Plexus lateral to artery
- Rotate probe to get artery round
- Hypoechoic bundle of grapes
- Tilt to get rib underneath target rather than pleura so to prevent overshoot of needle
- Lat to medial in plane
 - Needle tip in corner pocket of artery and 1st rib
- Second injection within plexus
- Needle tip control important
- Want to see spread of fluid amongst divisions - is not one big nerve
- 25-30mls 0.75% ropiv (smaller in elderly)

Side Effects
- Horner's syndrome - only if very high volume placed
- phrenic nerve block

Complications
- PTX
- phrenic nerve paralysis ~50% block
- artery puncture
- intravascular injection
Infraclavicular Block

Indications
- anaesthesia arm, forearm, wrist or hand surgery

Sono Anatomy
[see brachial plexus cords on US: med, lat, post]
- place probe beneath midpoint of clavicle in sagittal plane
- need subclavian artery in cross section
- in plane approach ensuring spread of LA posterior & lateral to artery
- place 20-30mls 0.75% ropiv
- twitches:
 - lat cord = elbow flexion - but too lateral!
 - post cord = wrist or finger extension (good)
 - pectoralis twitch = too superficial

Side Effects
- Horners
- (very unlikely to get phrenic nerve block)

Complications
- PTX
- artery puncture
- intravascular injection

Needle from above (head end).
Probe in position marked
Axillary Block

Indications
- Forearm, wrist or hand surgery

Sono-Anatomy
- Lighthouse: artery high in axilla perpendicular to humerus
- Arm abducted to 90% and ext rotated
- Look for: vein - too much pressure
- Can track nerves up from elbow if struggle to identify in axilla
- In plane or OOP
- Block deeper nerves first to prevent distortion superficially
- Don't forget musculocutaneous nerve which lies laterally underneath biceps and on top of coracobrachialis
- All nerves lie on anterior of fascial plane
 - 2 m's are on same side
 - Median nerve - starts lateral with artery but crosses it to medial in distal arm
 - Ulnar nerve:
 - Starts between art & vein
 - Bottom of axilla it moves to other side of vein
 - Radial nerve:
 - Between 3-6oclock ie post to artery
 - Drops down to humorous mid arm
 - M/c nerve
 - Most hyperechoic nerve in body
- 20ml total 0.75% ropiv

Side Effects
- nil

Complications
- artery puncture - compress for 5mins if so
- intravascular
- will not cover tourniquet pain:
 - axillary vein
Forearm Blocks

- Follow nerves up from location at wrist:
 - Elbow:
 - Median:
 - arm abducted, elbow slightly flexed, & supinated.
 - nerve medial & slightly deeper than brachial artery
 - Radial:
 - same position as for median block
 - block prox to flexor crease
 - nerve lateral to biceps tendon lying between brachialis & brachioradialis
 - Ulnar:
 - position should int rotated, abducted, elbow slightly flexed
 - block 2 cm prox to elbow
 - trace prox from ulnar groove. 2-3 cm see nerve running into triceps
 - Wrist:
 - Median:
 - dead central of wrist between palmaris longus & FCR
 - Ulnar:
 - medial to artery (between artery & FCU)
 - Radial:
 - divides prox to wrist: purely sensory at this stage

Biers Block

Indications
- anaesthesia for superficial arm surgery or fracture reduction
- max 30 mins surgery

Technique
- measure bp
- insert cannula into both arms (operating side should be distal back of hand)
- double tourniquet to upper arm
- exsanguinate limb with compression bandage or elevate if fractured
- inflate cuff 100 mmHg above art pressure
- inject prilocaine 7 mg/kg into cannula distal to tourniquet:
 - Metabolism in liver
 - Risk of metHb creation
- arm will feel warm & mottled
- surgery start in mins
- tourniquet must stay up for at least 15 mins
Abdomen Anatomy
- as TAP blocks

Regional Blocks Abdomen

Transversus Abdominis Plane Block
- 25% patients don't have nerve in this plane
- Single shot should last ~12hrs
- Limited evidence
- No advantage over intrathecal morphine
Indications:
- Analgesia for surgery on ant abdomen

Anatomy
- Ant abdo innervated by anterior rami of T7-L1
- Nerves run in TAP between IO & TA:
 - Thoracic nerves T7-T11: sensation to abdominal wall
 - T12
 - Ilioinguinal and iliohypogastric (both L1)
- Halfway through their course from post → lat → ant abdomen they give out lat cutaneous branches
 - These pierce IO & EO → lat abdo wall
 - Must place block more lat/post to this branching

Sono-Anatomy
- Probe halfway between iliac crest & costal margin as picture above
- IP technique with probe mid axillary line & needle ant to it
- Move into TAP making sure feel movement through EO & IO
- Inject 25mls 0.375% ropiv into each side (volume is more impt than conc to achieve spread)

Complications
- Failure - high failure rate, poor coverage, only covers skin
- Bowel puncture
- Intrahepatic/intrasplenic injection

Inguinal Field Block

Indications
- Inguinal hernia, orchidopexy, hydrocele surgery

Anatomy
- Ilioinguinal & iliohypogastric nerves:
 - Branches of lumbar plexus from L1 ant rami
 - Run along TAP then pierce IO → EO to provide sensation to lower abdo & upper thigh
- LM block =
 - Perpendicular needle 2cm medial to ASIS
 - Inject 8mls after 1st pop = IO - EO plane
 - Inject 8mls after 2nd pop = TA - IO plane
- S/C infiltration:
 - Fan wise superficial to aponeurosis → block cutaneous supply from lower intercostals & subcostals
 - Inject
 - Medial end of incision
 - Fan wise from pubic tubercle (to block contralaterals)
- Surgeon: 5mls into inguinal canal → genitofemoral nerve

Sono Anatomy
- Probe between ASIS & umbilicus & scan caudally
- Insert IP with needle medial to probe
- Use US to identify planes
- Inject in TAP plane

Complications
- Femoral nerve block
- Bowel puncture
- Intravascular injection
Rectus Sheath Block
- need to inject post border of muscle but within rectus sheath
- limited benefit
Lower Limb

Lumbar Plexus

Nerves
1 (twice) Get Laid On Fridays
2 from 1, 2 from 2, 2 from 3
2 GO medial of psoas (genitofemo & obturator) ⇒ rest go lateral
- Iliohpogastric (L1)
- ilio-inguinal (L1)
- Genitofemoral (L1,2)
- Lateral cutaneous nerve of thigh (L2,3)
- Obturator Nerve (L2-4)
- femoral nerve (L2-4)
Femoral Nerve

Route
- post division of ant primary rami
- runs through pelvis on top of iliacus
- emerges under inguinal ligament lateral to artery
- passes into femoral triangle where divides

Division
- anterior division:
 ‣ divides further into cutaneous branches (medial & intermediate cutaneous nerves of thigh)
- post division:
 ‣ divides further:
 - to supply muscles & joints
 - saphenous:
 • comes off post femoral 3cm below inguinal ligament
 • passes into adductor canal
 • pierces roof of canal to become cutaneous between sartorius & gracilis
 • descends medial side of leg

Supply

<table>
<thead>
<tr>
<th></th>
<th>Femoral</th>
<th>Ant F.</th>
<th>Post F.</th>
<th>Saphenous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articular</td>
<td></td>
<td></td>
<td>- knee (anterior)</td>
<td></td>
</tr>
<tr>
<td>Sensation</td>
<td></td>
<td>- med & intermediate cutaneous of thigh</td>
<td>- hip</td>
<td>- skin front & medial side of knee, leg, foot</td>
</tr>
<tr>
<td>Muscle</td>
<td>- iliacus</td>
<td>- sartorius</td>
<td>- quads</td>
<td></td>
</tr>
</tbody>
</table>

Obturator Nerve

Route
- from ant divisions L2,3,4
- passes down inside psoas major & emerges medial to it
- crosses sacro-iliac joint & obturator internus
- enters pelvis via opening in obturator membrane = obturator canal

Divisions
- divides into:
 ‣ anterior
 - with femoral nerve makes subsartorial plexus
 ‣ posterior
Supply

<table>
<thead>
<tr>
<th></th>
<th>Obturator</th>
<th>Post D.</th>
<th>Ant D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articular</td>
<td></td>
<td>- post knee incl cruciates</td>
<td>- Hip</td>
</tr>
<tr>
<td>Sensation</td>
<td></td>
<td></td>
<td>- Some skin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>high medial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>thigh</td>
</tr>
<tr>
<td>Muscle</td>
<td></td>
<td>- Ad Magnus</td>
<td>- Ad Longus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Obturator externus</td>
<td>- Ad brevis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Gracilis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Pectineus</td>
</tr>
</tbody>
</table>

Lumbosacral Plexus

Nerves
- Sciatic:
 - Common peroneal (L4-S2)
 - Tibial Nerve (L4-S3)
- Others:
 - Sup gluteal (L4-S1)
 - Inf gluteal L5, S1)
 - Pudendal (S2-S4)
 - Posterior cutaneous nerve of thigh (S1-3)
Sciatic Nerve

- from ventral rami
- = largest nerve in body
- emerges through greater sciatic notch under piriformis
- passes down under biceps femoris & between other hamstrings to superior corner of popliteal fossa where it divides: (although may divide higher up in thigh)
 ‣ tibial nerve
 ‣ common peroneal nerve

<table>
<thead>
<tr>
<th></th>
<th>Sciatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articular</td>
<td>hip, knee</td>
</tr>
<tr>
<td>Sensation</td>
<td></td>
</tr>
</tbody>
</table>
| Muscle | • All hamstrings
 | • Adductor Magnus |

Clinical

- damage to sciatic →
 ‣ loss all active movement below knee
 ‣ foot drop
 ‣ loss most of sensation (except saphenous distribution)

Tibial Nerve (L4-S3)

- = larger of 2 sciatic divisions

Route

- from sup to inf corners of popliteal fossa
- @knee gives off sural nerve (CPN also contributes to it)
- pass under fibrous arch of soleus
- @ankle lies between medial malleolus & achilles tendon (post to malleolus)
- passes under flexor retinaculum
- ends by dividing into:
 ‣ med plantar nerve
 ‣ lateral plantar nerve

Divisions

- sural nerve:
 ‣ passes down leg post to lat malleolus

Supply

<table>
<thead>
<tr>
<th></th>
<th>Tibial</th>
<th>Sural</th>
<th>Med & lat plantars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articular</td>
<td>- Ankle</td>
<td>- Post-Lat side distal ½ leg</td>
<td>- Ant ⅔ sole of foot</td>
</tr>
<tr>
<td></td>
<td>- knee</td>
<td>- lat border of foot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Sup tib/fib</td>
<td>- 5th toe except distal phalanx</td>
<td></td>
</tr>
<tr>
<td>Sensation</td>
<td></td>
<td>- Intrinsic mm’s of foot</td>
<td></td>
</tr>
<tr>
<td>Muscle</td>
<td>- Both heads gastro</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- soleus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- plantaris</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- popliteus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- tip post, FDL, FHL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Common Peroneal Nerve (L4-S2)

Route
- down upper lateral border of popliteal fossa
- runs behind tendon of biceps femoris
- gives off supply to sural nerve (also from tibial nerve)
- winds round head fibula
- here divides into:
 - deep branch
 - superficial branch

Divisions
- Deep branch:
 - runs under EDL
 - descends on ant aspect of IOM
 - passes under ankle extensor retinaculum
 - in foot divides into:
 - med branch
 - lateral branch
- Superficial branch:
 - runs down under peroneus longus
 - ⅔ down leg divides into:
 - med branch
 - lat branch

Supply

<table>
<thead>
<tr>
<th>Common Peroneal</th>
<th>Deep CPN</th>
<th>Superficial CPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articular</td>
<td>- Knee</td>
<td>- Inf tib fib</td>
</tr>
<tr>
<td></td>
<td>- sup tib fib</td>
<td>- ankle</td>
</tr>
<tr>
<td>Sensation</td>
<td></td>
<td>ant/lat aspect of leg</td>
</tr>
<tr>
<td>Muscle</td>
<td></td>
<td>- EDL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Tib Ant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- EHL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- peroneus tertius</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deep Medial</th>
<th>Deep Lateral</th>
<th>Sup Medial</th>
<th>Sup Lateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articular</td>
<td>- Small joints of foot</td>
<td>- Med side of dorsum of foot</td>
<td></td>
</tr>
<tr>
<td>Sensation</td>
<td>- Skin between 1st & 2nd toe</td>
<td>- Hallux</td>
<td></td>
</tr>
<tr>
<td>Muscle</td>
<td>- EDB</td>
<td>- 2nd & 3rd toes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- skin between 3rd-4th & 4th-5th toes</td>
<td></td>
</tr>
</tbody>
</table>
Cutaneous Supply to Lower Limb
Lower Limb Blocks

Lumbar Plexus Block

Indications
- surgery hip, knee or femoral shaft surgery
- if for lower leg need to combine with sciatic block

Anatomy
- nerves of plexus lie within body of psoas muscle
- side lying, curled, side to be blocked upper
- Tuffiers line then move ~4cm parallel lateral (⅓ towards line with PSIS’s)
- insert needle perpendicular to skin
- insert until contact transverse process ~4-7cm in
- redirect slightly cephalad or caudal
- correct position reached ~6-9cm with quadriceps contraction ⇒ dancing patella

Sono-Anatomy
- curvi-linear probe
- identify L4 transverse process by coming up from sacrum in para-sagital plane
- rotate probe to transverse and attempt to identify position to just miss transverse process with needle
- use with nerve stimulation - looking for twitches with 0.5-1mA with saline

- 0.75% ropiv 20-30ml

Side Effects
- epidural spread

Complications
- intrathecal injection
- LAST
- intra-adbo organ damage
- intravascular injection

Tips
- nerve stim 0.2mA ≈ intraneural .: risk of nerve damage on injection & spread of LA up to epidural spaces
Fascia Iliaca Block

Indications
- #NoF
- Hip surgery

Anatomy
- junction middle & lateral thirds of the femoral crease (lateral to fem nerve)
- 2 pops needed:
 ‣ 1st pop = fascia lata
 ‣ 2nd pop = fascia iliaca

Sono-Anatomy
- use to ensure in correct plane
- need tip in between sartorius (above) & iliacus (below)
- place 20-30mls 0.75% ropiv

Side Effects
- nil

Complications
- nil

Femoral Nerve Block

Indications
- analgesia for femoral shaft & knee
- combine with sciatic to produce analgesia below knee

Sono-Anatomy
- go proximal to fem artery giving off profunda
- deposit LA deep & medial to fem nerve
- 3 in 1 block=
 ‣ apply pressure 2-3cm distal to site of injection in order to get prox spread of LA
• hope to block obturator & lat cutaneous of thigh
 → very unreliable

Side Effects
- nil

Complications
- arterial puncture
- intravascular injection

Lateral Cutaneous Nerve of Thigh

Sono-Anatomy
- nerve runs under inguinal ligament just medial to ASIS
- runs over sartorius mm
- slide probe from medial to lateral at level of femoral block to identify lateral margin of sartorius
- located between fascia lata & fascia iliaca
- 5-10mls sufficient
Sciatic Nerve Block
- multiple approaches:

<table>
<thead>
<tr>
<th>Approach</th>
<th>Benefits</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subgluteal</td>
<td>Proximal in nerve, posterior cutaneous nerve</td>
<td>Deep</td>
</tr>
<tr>
<td>Anterior</td>
<td>Supine position</td>
<td>Really deep!</td>
</tr>
<tr>
<td>Popliteal</td>
<td>Superficial, catheter</td>
<td>Distal in nerve, lower leg only</td>
</tr>
</tbody>
</table>

Subgluteal Approach

Anatomy
- Labat approach:
 - recovery position as above
 - mark PSIS, Greater trochanter & sacral hiatus
 - draw lines as above: 3rd line perpendicular from midpoint between PSIS & GT
 - where crosses GT-SH line = needle insertion site - depth 5-10cm
Sono-Anatomy
(need pt in full lateral)
- curvilinear probe - in or out of plane, placed over site
- lateral, mid point between ischial tuberosity & greater trochanter
- target nerve between glut max & quadratus femoris
 - size of nerve means need LA placed medial & lateral to nerve
- useful to use twitches (1mA) to localise needle tip:
 - best for tibial = plantar flexion of foot
 - best for common peroneal = eversion of foot
- 15-30ml of LA

Anterior Sciatic Block

Positioning
- avoid need for lateral or recovery position
- slight abduction & ext rotation ⇒ allow access to anterior medial aspect of proximal thigh with

Sono-Anatomy
- very deep block
- not suited to catheter insertion
- curvilinear probe in at level of lesser trochanter in horizontal plane
- identify femoral artery +/- profunda (deep & medial to FA)
- sciatic nerve seen flattened oval between Adductor magnus and hamstrings at approx 6-8cm
- if difficult to see ask pt to DF/PF ankle which can show up nerve
- use OOP with very steep needle angle
- hydrodissection will help identify depth level of needle tip as approaches sciatic nerve
- inject 20mls on top of nerve
Popliteal Sciatic Block

Indications
- ankle & foot surgery

Sono-Anatomy
- patient supine with externally rotated hips & slightly flexed knee
- scan transversely through popliteal fossa distal to proximal looking for divisions of sciatic coming together

- inject in or OOP just distal to branching 5-10cm above popliteal fossa
- note in some sciatic is 2 distinct nerves the length of the leg
- possible to mistake tendons for nerves - get patient to DF/PF foot to show up tendons
Saphenous Nerve/Adductor Canal Block

Indications
- commonly done with popliteal to gain complete lower limb/foot coverage

Sono-Anatomy
- scan medial side of mid thigh looking for adductor canal & superficial femoral artery
- if can't find artery follow it down from inguinal crease
- then deposit LA either side of artery
Ankle Blocks

Anatomy
- 5 nerves innervate foot - need to block all individually

Technique

<table>
<thead>
<tr>
<th>Supply</th>
<th>LM Block</th>
<th>Sono-Anatomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>saphenous</td>
<td>Medial ankle & foot</td>
<td>- 5mls from med malleolus anterioy</td>
</tr>
<tr>
<td>Sural</td>
<td>Lat foot & 5th toe</td>
<td>- 5mls from lat malleolus inferiorly to TA</td>
</tr>
<tr>
<td>Tibial</td>
<td>Sole of foot</td>
<td>- 5mls post to tib artery behind med malleolus just above bone</td>
</tr>
<tr>
<td>Sup peroneal</td>
<td>Dorsum of foot</td>
<td>- 10ml fanning laterally across dorsum of foot 2-3cm distal to intermalleolar line</td>
</tr>
<tr>
<td>Deep peroneal</td>
<td>Web space 1st & 2nd toes</td>
<td>- 5ml just lat to dorsalis pedis artery just above bone</td>
</tr>
</tbody>
</table>

Side Effects
- nil

Complication
- arterial puncture
- bruising
Trunk Blocks

Anatomy of Nerve Supply to Thorax & Abdomen
- mm & skin of chest & abdo supplied by spinal nerves from T2-T12
- contribution from L1 in inguinal region
- mixed spinal nerves emerge from intervertebral foramen into paravertebral space
- in PVB space they divide:
 ‣ dorsal rami \Rightarrow dorsum of trunk
 - deep muscles
 - skin
 ‣ ventral rami \Rightarrow
 - intercostal nerves \Rightarrow neurovascular plane between intercostals \Rightarrow ant cutaneous nerve
 - lat cutaneous branch given off before costal angle \Rightarrow pierces intercostals to become more superficial in midaxillary line

Superficial Cervical Plexus Block

Indications
- analgesia for carotid surgery or central lines

Anatomy
- primary rami of C2-C4 found behind post border of SCM
- they fan outwards and branch into 4 nerves (which need blocking):
 ‣ lesser occipital
 ‣ greater auricular
 ‣ cutaneous cervical
 ‣ supraclavicular
- LM technique:
 ‣ head turned away
 ‣ identify post border of SCM (by asking pt to turn head towards side against resistance
 ‣ injection point = midpoint of SCM (at level of cricoid cartilage (C6)
 ‣ pierce 1st fascial layer and infiltrate along & underneath SCM
3cm caudad & cephalad from injection point

Sono-Anatomy
- transverse scan up neck looking at post border of SCM
- identify emergence of nerves
- use IP approach to inject deep under lat border of SCM
- ensure not injecting into carotid, IJ & EJ

Side Effects
- Horner's
- phrenic nerve block
- vagus nerve block

Complications
- vessel puncture \Rightarrow haematoma
- intravascular injection

Intercostal Block

![Intercostal block diagram](image)

Indications
- analgesia for fractured rib
- ICD insertion
- open cholecystectomy

Anatomy
- nerves run:
 - underneath each rib in neurovascular bundle
 - inbetween internal & innermost muscle layers
- before costal angle \Rightarrow give off lateral cutaneous branch \Rightarrow supplies late trunk & abdo
- cross over innervation means have to block at least 1 level above & below
- LM technique:
 - identify correct rib level:
 - count down from spinous process C7
 - upwards from 12th rib
 - down from inf border of scapula T7
 - inject in post axillary line (or further posterior ie behind angle of rib)
 - palp sup & inf borders of rib above & below
 - stretch skin slightly cephalad
 - insert 22G needle perpendicular to touch cauda border of rib. withdraw 2mm
 - relax skin (needle now angulated caudad)
 - advance past rib border feeling pop as it pierces fascia of internal intercostal mm
- aspirate then inject 3-5ml/level

Sono-Anatomy
- prob in sagital plan as LM technique
- look for pleura
- use IP (needle entry caudad) or OOP
- move needle tip to caudad border of rib above just above pleura
- LA injection in correct plane ⇒ depression of pleura inwards

Side Effects
- vascular space ⇒ risk of toxicity if multiple levels blocked

Complications
- PTX
- haematoma

Notes
- PVB or epidural much better options if multiple level or longer block required
- good option if pt anticoagulated
- avoid PTX!!!

Thoracic Paravertebral Block

Indications
- breast surgery
- thoracotomies
- open cholecystectomies
- renal surgery/fractured ribs

Sono-Anatomy
- ultrasound in para-saggital plane so can see multiple transverse processes on screen (2-3cm off mildine to operative side)
- need to visualise pleura & slightly above superior costo-transverse ligament
- slow movement into space in plane with careful needle tip control so as not to puncture pleura
- 15-20ml at single level to attain spread cauda & cephalad
Boundaries
- **Ant/lat:**
 - Parietal + visceral pleura
 - pleural space
 - lung parenchma
- **Medially:**
 - Vertebral body, disc, foramina
- **Laterally:**
 - post intercostal membrane
 - intercostal space
- **Post:**
 - SCTL
 - rib

Side Effects
- epidural spread
- SNS block

Advantages
- as good as epidural for analgesia with ↓ side effects
- mastectomy under PVB alone - limited evidence to suggest ↓ Ca recurrence
- infection/haematoma away from spinal cord

Disadvantages
- ↓ spread of segments covered above & below

Complications
- PTX
- LAST
- intravascular injection
- ischaemia/abscess

Neuraxial Techniques

Anatomy
- Spinal cord terminates as conus medullaris
 - adults: L1 lower border of vertebral body adults
 - infants: L3
- conus medullaris attached to coccyx by filum terminale:
- neural fibrous band
- surrounded by cauda equina:
 - = nerves of lower Lx & Sx roots
 - ∴ runs from L1 - S2
- meninges in bony vertebral column:
 - pia mater: (deep)
 - high vascular
 - closely envelops cord ⇒ creates filum terminale
 - arachnoid mater:
 - non vascular
 - delicate
 - effectively adhered to dura mater
 - dura mater (superficial):
 - longitudinally organised fibroelastic membrane
 - continuous from cranial dura mater ∴ runs foramen magnum ⇒ S2 (attaches to coccyx)
- spaces:
 - Subarachnoid space (between pia mater & arachnoid mater)
 - contains:
 - CSF
 - spinal nerves
 - trabecular network
 - blood vessels which supply spinal cord
 - dentate ligaments - lat extensions of pia mater - supply lat support from bone to spinal cord
 - space ends S2 in adults (lower in children)
 ⇝ despite spinal cord ending at L1-L2
 - Extends laterally along nerve roots to dorsal root ganglia
 - Subdural space =
 - potential space inbetween dura & arachnoid mater
 - not used intentionally by anaesthetists
 - symptoms of injection: (see later)
 - Epidural space =
 - from foramen magnum to sacral hiatus
 - outside boundaries:
 - ant: PLL
 - lat: pedicles & intervertebral foramina
 - post: ligamentum flavum
 - cephalad: foramen magnum
 - caudal: coccygeal ligament
 - internal boundaries = dura mater
 - = a low pressure area containing:
 - areolar tissues
 - loose fat
 - blood vessels & lymphatics
 - internal vertebral venous plexus
 - is segmented & discontinuous with:
 - epidural space septa - explain unilateral block
 - dorsal median connective tissue
 - Ligamentum flavum:
 - nonuniform ligament, different space to space
 - composed of 2 curvilinear ligaments which join in the middle
maximal thickness in Lx region 2-5mm

Vertebral Anatomy

Overview

Cervical Vertebrae
Thoracic Vertebrae

- Intervertebral facets on arc of circle
- Transverse process
- Spinal canal
- Articular facets for ribs
- Body
- Superior articular facet
- For rib
- Demifacets for ribs
- Vertebral notch (for spinal nerve)
- Spine
- Interior articular facet

Lumbar Vertebrae

- Spine
- Superior articular facets (face postero-medially)
- Transverse process
- Spinal canal
- Body
- Pedicile
- Interior articular facet (faces antero-laterally)

Sacral Vertebrae

- Sacral canal
- Direction of emerging nerve
- For L 5
- For ilium (sacroiliac joint)
- Posterior foramina seen through anterior foramina
- Coccyx
- Sacral promontory
Structures When Passing Needle
- Skin to sub arachnoid space:
 - skin
 - sub cut fat
 - supraspinous ligament
 - interspinous ligament
 - ligamentum flavum ⇒ give of resistance
 ⟹ = 1st pop
 - dura & arachnoid mater (hopefully together)
 ⟹ = 2nd pop

Epidural Analgesia
- Can provide complete analgesia for 3-5 days

Benefits
- Efficacious
- ↓ ed atelectasis & pulmon infection, better cough
- ↓ post op ACS:
 - ↓ sympathetic stress thus ↓ myocardial oxygen requirement
 - ↓ hypercoagulable states & fibrinolytic function is improved
 ↓ proven benefit in graft survival in vascular surgery
- Quicker post op mobility ⇒ ↓ post op DVT
- ↑ gut action by ↓ pain & ↓ opiate need ie less ileum
- Intraop epidural ↓ s post op blood transfusions
 ↓ BUT no ↑ survival benefit in high risk patients

Disadvantages
- complications of insertion
- hypotension
- Pruritus: epidural > spinal
- ↑ anaesthetic time
- ↑ ed post op care needed
- does not cover visceral pain - only somatic

Contraindications
- Patient refusal
- Untrained staff
- Contraindications to needle placement:
 - Local or general sepsis
 - Hypovolaemia
 - Coag disorders:
 - Platelets <80
 - INR >1.5
 - Concurrent anticoag drugs
 - Central neurological diseases

Tips
- Breakthrough pain:
 - Add oral paracetamol or NSAID
 - Bolus dose 3-5ml then ↑ infusion rate
 - Check all connections and infusion site
 - Check block - if patchy withdraw catheter to 2cm in space
 - Bolus fentanyl 50-100mcg or pethidine 25-50mg
• Pruritis:
 • Give naloxone 50-100mcg & consider adding 300mcg to infusion fluids
 • Remove opioid from infusion
 • Try antihistamines or ondansetron
• Hypotension:
 • Check fluid status
 • Check block height ⇒ ↓ infusion rate
 • Ephedrine/metaraminol
• Motor block -
 • ↓ infusion rate
 • ↓ LA concentration
• Shivering: try fentanyl, pethidine, tramadol, ondansetron

Complications

<table>
<thead>
<tr>
<th>Complication</th>
<th>Incidence (%)</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dural puncture</td>
<td>0.16–1.3</td>
<td>Bed rest, analgesia, hydration, blood patch (see p748)</td>
</tr>
<tr>
<td>Headache</td>
<td>16–86</td>
<td>Bed rest, analgesia, hydration, suspect dural puncture</td>
</tr>
<tr>
<td>Nerve or spinal cord injury</td>
<td>0.016–0.56</td>
<td>Immediate neurological assessment (see p32 and p1178)</td>
</tr>
<tr>
<td>Catheter migration</td>
<td>0.15–0.18</td>
<td>Remove catheter and reSITE if appropriate</td>
</tr>
<tr>
<td>Epidural haematoma</td>
<td>0.0004–0.03</td>
<td>MRI or CT scan, immediate neurosurgical assessment, Antibiotics (see also p1105 and p1171)</td>
</tr>
<tr>
<td>Epidural abscess</td>
<td>0.01–0.05</td>
<td></td>
</tr>
<tr>
<td>Respiratory depression</td>
<td>0.13–0.4</td>
<td>Decrease in opioid concentration may be required</td>
</tr>
<tr>
<td>Hypotension</td>
<td>3–30</td>
<td>IV fluids ± vaspressors. Temporarily reduce or stop infusion</td>
</tr>
<tr>
<td>Pruritus</td>
<td>10</td>
<td>Naloxone IV (50–100µg) ± antihistamine</td>
</tr>
<tr>
<td>Urinary retention</td>
<td>10–30 (males)</td>
<td>Check for catheter migration. Consider epidural haematoma (p1171 and p1174)</td>
</tr>
<tr>
<td>Motor block</td>
<td>3</td>
<td>Catheterisation</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>Possible increased risk of anastomotic leakage after bowel surgery. No evidence to support this</td>
</tr>
</tbody>
</table>

• Spinal infection:
 • Classic triad of epidural abscess (0nly seen together in 13%):
 - Fever (66% on own)
- Backache (75% on own)
- Neurological signs (very late sign)
- Normal bloods mean nothing
- If suspect should remove immediately and send line tip to lab
- 90% infections are bacterial (mostly staph aureus)
- MRI early before neurology develops
- Once muscle weakness develops:
 - only 20% will regain full function even after surgery
 - Better prognosis: <36hrs, extent compression, younger
- Mortality 10%
- Needs percutaneous aspiration & Abx

Drugs in Epidural
- Standard protocols used in different institutions:
 - Light mix - bupivacaine 0.125% & fentanyl 2mcg/ml
- Infusion rates:
 - 8-15ml/hr adult
 - 4-8ml/hr >70yr olds

Spinal Anaesthesia

Dosing
- Older & pregnant need less
- 2.5 - 3mls of hyperbaric will reach T6-T10 in most non pregnant young if placed in lying shortly after injection
- If isobaric LA given dose needs to be higher
- Lignocaine not used
- Ropivocaine not licensed for intrathecal use
- Hyperbaric solutions:
 - Used to get higher block
 - More hypotension
- Isobaric:
 - Produce lower block height
 - Less hypotension

Contraindications
- Absolute:
 - Local sepsis
 - Refusal
 - Anticoagulation (see epidural)
- Relative:
 - Aortic or mitral stenosis
 - Hypovolaemia/hypotension
 - Prev back surgery - possibly technically difficult
 - Neurological disease
 - Spinal stenosis - ↑↑ed risk of complications
 - Systemic sepsis - ↑ed risk of meningitis/epidural abscess

Complications
- Hypotension
- Bradycardia -
 - block into mid thoracic region
• Can progress to cardiac arrest
 • High block ⇒ compromised breathing ⇒ total spinal
 • Urinary retention
 • Nerve damage -
 - permanent injury 1:25,000 to 1:50,000
 - Paraplegia or death 1:50,000 to 1:140,000
• Post dural puncture headache
• Infection/Abscess
• Meningitis - 1:50,000
• Bleeding - ↑ed risk with epidural

Complications of Neuraxial Block

Hypotension
• Avoid aortocaval occlusion (pregnancy) ⇒ move to full lateral position
 └ measure bp on dependant arm
• IV fluid bolus
• Vasopressor/inotrope - ephedrine vs metaraminol

Subdural block
• When epidural catheter placed between dura mater & arachnoid mater
• Less than 1:1000 BUT may be indistinguishable from epidural placement
• Definitive diagnosis is radiological
• Characteristics of subdural block:
 • Slow onset 20-30min which is much more extensive than volume should dictate
 └ may extend to Cx dermatomes with Horners syndrome
 • Patchy & asymmetrical block with sparing of motor fibres to LLs
 • Total spinal with top up dose
 └ due to ↑volume ⇒ rupture of arachnoid mater
• Rx by stopping infusion and re-siting catheter

Total Spinal
• If initial plan is epidural incidence = 1:5,000 - 1:50,000
• Features:
 • Rapid onset BUT can be delay upto 30mins
 └ change maternal position or migration of catheter
 • Rapid rising block
 • Impaired coughing
 • Loss hand/arm strength
 • Difficulty talking, breathing & swallowing
 • Cardiovascular depression ⇒ resp paralysis ⇒ unconsciousness ⇒ fixed dilated pupils
• Rx:
 • Maintain airway & ventilation
 └ may need intubation if if not fully unconscious in order to protect airway
 • Avoid aortocaval compression (pregnant)
 • Ventilation for 1-2hours may be required

IV injection of LA
• IV or partial IV catheter poisoning occurs in at least 5% epidurals
• Every dose is a test dose
• Strategies to reduce risk:
 ‣ Always check for blood in catheter
 ‣ Always think of LA poisoning with every dose even if prev had no issues
 ‣ Divide all large LA doses into smaller aliquots
 ‣ Use low toxicity LAs
• LA toxicity algorithm

Treatment of Neuro Complication
- Assess patient promptly
- Full neuro exam well documented
- Initiate appropriate Rx asap:
 ‣ Abx
 ‣ Ref to neurologist/neuro surgeon
 ‣ Imaging - MRI

Techniques to Prevent Injury
- US prescan
- Don't perform technique if spinal stenosis
- Comply with anticoag guidelines
- Avoid intra-op hypotension
- Chlorhex:
 ‣ Keep away from block material - use lollipops not poured clear fluids
 ‣ Allow to dry on skin 2-3 min
 ‣ Use 0.5% chlorhex
- Avoid asleep neuraxial in adults
Coagulation Disorders

Drugs used in Neuraxial & Deep blocks

Based on Uk doc. US (ASRA) much more conservative

<table>
<thead>
<tr>
<th>Drug</th>
<th>Time to Peak Effect</th>
<th>Elim ½ life</th>
<th>Time after Drug before Block</th>
<th>Administration of drug with neuraxial in place</th>
<th>After block or catheter removal for next drug dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UFH IV</td>
<td><30min</td>
<td>1-2hrs</td>
<td>4h or norm APTT</td>
<td>caution</td>
<td>1hr</td>
</tr>
<tr>
<td>LMWH prophylaxis</td>
<td>3-4hr</td>
<td>3-7hr</td>
<td>12hr</td>
<td>caution</td>
<td>4-6hrs</td>
</tr>
<tr>
<td>LMWH Treatment</td>
<td>3-4hr</td>
<td>3-7hr</td>
<td>24hr</td>
<td>not recommended</td>
<td>4-6hrs</td>
</tr>
<tr>
<td>Bivalirudin</td>
<td>5min</td>
<td>25min</td>
<td>10hr or norm APTT</td>
<td>not recommended</td>
<td>6hrs</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>1-12 hrs</td>
<td>1-12 hrs</td>
<td>no probs</td>
<td>no probs</td>
<td>no probs</td>
</tr>
<tr>
<td>Aspirin</td>
<td>12-24hr</td>
<td>irreversible</td>
<td>no probs</td>
<td>no probs</td>
<td>no probs</td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>12-24hr</td>
<td>irreversible</td>
<td>7days</td>
<td>not recommended</td>
<td>6hr</td>
</tr>
<tr>
<td>Ticagrelor</td>
<td>2hr</td>
<td>8-12hr</td>
<td>5 days</td>
<td>not recommended</td>
<td>6hr</td>
</tr>
<tr>
<td>Dipyridamole</td>
<td>75min</td>
<td>10hr</td>
<td>no probs</td>
<td>no probs</td>
<td>6hr</td>
</tr>
<tr>
<td>Warfarin</td>
<td>3-5days</td>
<td>4-5days</td>
<td>INR <1.5</td>
<td>not recommended</td>
<td>immediate post</td>
</tr>
<tr>
<td>Rivaroxaban Proph CrCl >30 Rx CrCl >30</td>
<td>3hrs</td>
<td>7-9hr</td>
<td>7-11hr</td>
<td>18hr 2day</td>
<td>not recommended</td>
</tr>
<tr>
<td>Darbepoetin</td>
<td>0.5-2hrs</td>
<td>12-17hrs 15hr 18hr</td>
<td>2d</td>
<td>3d</td>
<td>4d</td>
</tr>
<tr>
<td>CrCl <50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrombolytic drugs</td>
<td><5min</td>
<td>4-24mins</td>
<td>10 days</td>
<td>not recommended</td>
<td>10 days</td>
</tr>
</tbody>
</table>

- no concern over herbal medicines
- reversal agent for dabigatran now available = idarucizumab
Evidence For Regional

- lot of studies - RA may be beneficial for some people, for some things
- no studies to demonstrate worse outcomes than GA - only conflicting evidence
- specific patients & settings where clearly beneficial/useful

- DVT risk is ↓ed compared to GA (but that is eliminated with chemical prophylaxis)
- better pain management
- ↓ bleeding post major joint operations
- ↓POCD in short term (no diff long term)
- limited ↓Ca recurrence in breast Ca
- suggest ↓ chronic pain esp in thoracic surgery

- risks of regional complications are small:
 - post op pain:
 - block wearing off - start analgesia very early when block wearing off ie first return of sens
 - select for procedures not painful post op
 - ie have plan