Contents

General principles ..2

- Causes ... 2
- BMI ... 2
- Issues .. 2
- Medical Co-Morbidities 2
- Risk Scoring ... 6

Peri-Operative Practicalities6

- Preoperative .. 7
- Perioperative ... 7
- Postop ... 8
- Pharmacology .. 8
- Thromboprophylaxis 10
- Neuraxial Techniques 10

By Surgery ..11

- Bariatric Surgery .. 11
- Intragastric Balloon Insertion & Removal 11
- Gastric Banding .. 11
- Gastric Bypass .. 12
- Sleeve Gastrectomy 12
General principles

- obese have ↑ energy expenditure compared to lean people
- BMR corrected for body surface area is the same
- but obese have ↑ bsa ⇒ ↑O2 consumption & CO2 production

Causes

- multifactorial incl genetic & environmental factors which are not fully understood
- resting energy expenditure is ↑ed but also see ↑↑↑ calorie intake
- balance of appetite & satiety is complex centrally processed by hypothalamus:
 - hormones eg
 - lepin:
 - made in adipose
 - function to ↓ appetite
 - obese have ↑ed circulating levels but lepin insensitivity
 - long term hunger level
 - adiponectin:
 - similar signalling role to lepin
 - insulin:
 - controls short term appetite by working on hypothalamus
 - ghrelin
 - from wall of stomach
 - stretching ⇒ ↓ release ⇒ ↓ appetite
 - neuro mechanisms

BMI

weight(kg)/height (m)^2

- <20 = underweight
- 20-25 = normal
- 25-30 = overweight
- 30-40 = obese
- 40-50 = morbidly obese (>35 with comorbidities)
- 50-60 = super obese
- 60-70 = super super obese
- >70 = hyperobese

Issues

- Medical co-morbidities
- airway/ventilation
- OSA
- Metabolic complications
- positioning/handling
- drug dosing

Medical Co-Morbidities

- Obesity paradox:
 - outcome data shows equal or lower mortality in obese than normal weight critically ill patients (eg sepsis, heart failure)
 - no surgical evidence that outcomes in obese worse than normal weight pts
 - Ting ICU admissions for obese

Summary

- associations:
 - HTN
dyslipidaemia
IHD
DM
OA
liver disease
asthma
OSA & obesity hypoventilation syndrome

OSA
- apnoea definition =
 - cessation of airflow @ mouth/nose (apneic episodes) for >10s despite effort with hypoxaemia
 - >5/hr
- interruption of REM sleep
- strong association with obesity but other causes:
 - adeno-tonsillar hypertrophy
 - craniofacial abnormalities
- undiagnosed in ~80%

- different causes (strong overlap between them):
 - obstructive (pharyngeal wall collapse) (85%):
 - balance during inspiration:
 - -ve pressure created by diaphragm & intercostals
 - contractor of oropharyngeal dilator & abductor mms to maintain patent upper airway
 - alteration in balance caused by:
 - ↑fat in pharyngeal wall ⇒ ↑compliance
 - change airway geometry so axis of open part is AP rather than lateral ⇒ ineffective
genioglossus tone during inspiration
 - intermittent desat on PSG but full recovery from nadir
 - centrally driven aka obesity hypoventilation syndrome (5%):
 - severe disease with marked end organ damage
 - desensitisation of resp centres - ?leptin insensitivity
 - chars:
 - diurnal variation in ventilation
 - PaCO2 > 45 (type II failure)
 - ↓sensitivity to CO2
 - hypoventilation
 - ↑O2 consumption & ↑CO2 production:
 ‣ ↑ed metabolically active adipose
 ‣ mm work to support weight & respiration
 - BiPaP effective despite ↓drive
 - see prolonged desat with no recovery on PSG
 - mixed

- Pathophys:
 - hypoxaemia ⇒ secondary polycythaemia
 - systemic vasoC ⇒ HTN
 - pulmonary vasoC ⇒ RV failure

- STOP BANG OSA screening score for presence of OSA:
 - S nore loudly
 - T ired with daytime somnolence
 - O served apneic episodes
 - P ressure = HTN
 - B MI >35
 - A ge >50
 - N eck circumference >40cm
 - G ender = Male
 - score:
 - ≥3 = high risk; sensitive but low specificity
 - ≥5 = high risk OSA; high sensitivity & specificity

Obesity - 3
- Epworth Sleepiness Score:
 - good tool to decide who to send to sleep clinic for formal Ix
 - no point sending for sleep study if not sleepy

- Sleep service
 - perform polysomnography (PSG) - includes ECG, EEG, eye movements, EMG, snoring volume, oronasal airflow, SpO2s

- Apnoea = as defined prev
- Hypopnoea = ↓ airflow through airways ⇒ disturbance of sleep measured over total sleep time
- AHI (Apnoea or hypopnoea index) = total episodes in night/number of hours slept
 - ↑ not universally defined but ↓ airflow by 30% or >4% desat an example
 - index represents severity of OSA
 - grading:
 - <5 = normal
 - 5-15 = mild
 - 15-30 = moderate
 - >30 severe

- The point of PSG is to decide who to offer CPAP:
 - Symptomatic patients: ⅓ compliant, ⅓ semi compliant, ⅓ non-compliant
 - Asymptomatic patient: only 3% compliant with CPAP
 - but PSG ca be useful for peri-op risk stratification

Independent co-morbidities assoc with OSA:
- Airway: ↑ risk of difficult airway
- Neuro:
 - ↑ stroke
 - ↓ quality of life, ↓ cognitive function, depression
 - childhood OSA ⇒ ↓ IQ, ↓ memory, ↓ learning skills, bed wetting
- Endocrine:
 - impaired glucose tolerance & dyslipidaemia/DM
 - ↑ TACTH & ↑ cortisol
 - testicular & ovarian dysfunction
 - hypothyroid
- CVS:
 - HTN
 - arrhythmias
 - pHTN & heart failure
 - polycythaemia
- Paeds - assoc with adeno-tonsillar hypertrophy - but severity is not proportional

- Treated with
 - lifestyle factors: weight loss, stop smoking, stop alcohol, ↑ physical activity
 - Rx co-morbidities
 - CPAP
 - surgical uvulo-palato-pharyngoplasty
 - mandibular advancement devices
 - plan for difficult BMV +/- intubation
- If new diagnosis:
 - limited evidence CPAP 1-3months prior to surgery effect outcome
 - General benefit = well being, functional status, alertness

Anaesthetic Considerations
- ↑ risk of periop airway obstruction

PreOperative
- stratify pt risk based on:
 - patient factors:
 - severity of OSA
 - craniofacial abnormalities
 - compliance with CPAP
- obesity
 - surgical factors:
 - duration of surgery
 - laparoscopically possible or likely to be very painful post op
 - regional technique possible
 - if use to guide need for PSG preop, day case, HDU/ICU post op

- consider OSA in all paeds T&A's
- optimise co-morbidities

- Ix's
 - FBC
 - SpO2 - if resting hypoxia in clinic ⇒ ABG
 - ECG - if R heart strain ⇒ ECHO to exclude RVH
 - ABGs baseline - if normal HCO3 than can r/o OHS
 - if heart failure or hypercapnia >50 then defer elective surgery until 3/12 of CPAP

Intra-Operative
- avoid sedative pre-meds
- short acting agents - avoid opioids where able
- pre-oxygenate ++
- ETT preferred to sedation or GA with spont vent
- maximise non-opioid analgesia
- ↑ monitoring post op
- regional where possible

Post Op
- full NMB reversal
- high sitting
- extubate to CPAP
- target preop SpO2 - must have continuous monitoring overnight
- prolonged PACU stay - +1 hr on top normal protocol
- HDU

Other Respiratory problems

Lung Biomechanics
- ↓ FRC:
 - ↓ed in awake
 - ↓ for further post induction
- ↓ pulmonary compliance:
 - ↑ weight of chest wall
 - ↑ pulmon blood volume
- closing volume encroaches on FRC during VT
- rapid O2 desat

Asthma
- may have signs similar to asthma
- commonly bronchoconstrictive symptoms due to airway closure not hyperreactive airways affecting calibre
- closure = direct effect of obesity rather than intrinsic disease
- non-reversible with bronchodilators

CardioVascular
- physiology:
 - ↑ CO - to deliver ↑ metabolic tissue demands
 - ↑ MAP ⇒ LV dilation & hypertrophy ⇒ ↓ ventricular compliance ⇒ ↓ diastolic dysfunction & ↑ LVEDP
 - ↑ blood volume - 2nd to:
 - RAAS
 - polycythaemia
- ↑ risk of heart failure - caused by:
 - ↑ blood volume & ↑ LVEDP
 - chronic hypercapnia ⇒ pHTN ⇒ ↑ heart pressures ⇒ RV dilatation ⇒ cor pulmonale
- ↑ risk arrhythmias - caused by:
 - ↑ catecholamines 2nd to OSA
 - ventricular hypertrophy
 - fat infiltration of conducting systems
 - +/- hypokalaemia from diuretics
- ↑ ed risk of IHD:
 - ↑ DM
 - ↓ level of activity

Endocrine

- Insulin resistance & DM:
 - post onset obesity see:
 - ↓ glucose removal
 - insulin resistance
 - ➔ hyperinsulinaemia
 - later:
 - ↑ VLDL synthesis
 - ↑ plasminogen activator inhibitor 1 synthesis
 - ↑ SNS activity
 - ↑ Na reabsorption
 - ➔ hyperlipidaemia & HTN
 - development of type II DM = ↑ BSL later
- bariatric surgery (esp gastric bypass) can improve DM ii control immediately ie before weight loss
 - 80% complete resolution DM II within 1 yr post surgery

Metabolic Syndrome

- = occurrence of metabolic RFs for type II DM & CVS disease
- criteria - any 3 of 5:
 - abdo obesity (waist >102cm men; 88cm women)
 - serum triglycerides >1.7, or on Rx
 - HDL <1 men; <1.3 women, or on Rx
 - bp >130/85, or on Rx
 - fasting glucose >5.6, or on Rx
- risk of atherosclerotic CVS disease:
 - vasc endothelial dysfunction
 - abnormal lipids
 - HTN
 - vasc inflammation

Gastrointestinal

- ↑ intra-abdo pressures ⇒ ↑ reflux, ↑ aspiration

VTE

- ↑ risk of DVT & PE
- ↑ risk of recurrent VTE if anticoag withdrawn
- risk also ↑ ed if presence of:
 - smoking
 - air travel
 - women on OCP

Risk Scoring

Peri-Operative Practicalities
Preoperative

- Assess for high risk:
 - STOPBANG
 - poor functional capacity
 - abnormal ECG:
 - low voltage
 - LVH
 - QTc prolonged
 - inflat T abnormalities
 - R axis dev or RBBB
 - P pulmonale
 - uncontrolled bp
 - SpO2 <94% on RA
 - poorly controlled asthma/COPD
 - prev DVT/PE
 - if any should consider
 - ABGs/sleep studies
 - pre-op CPAP
 - ECHO
 - cardio-resp consult
- should perform CVS exam
- check whether can lie flat
- ABG as baseline for CO2 control
- consider gastric acid prophylaxis peri-op

Perioperative

- get pt to walk into OR
- lie on pre-prepared hover mattress
- standard monitoring:
 - bp cuff - acceptable to use forearm cuff
 - invasive A lines - only indicated for specific CVS problems
- cannulation - US guided periph or central lines
- SCDs on all
- careful Ul positioning to prevent brachial plexus shld ext/abduction injuries
- epidural analgesia:
 - advs:
 - ↓reduction in vital capacity & other spirometric values
 - lung volumes recovered quicker post op
 - disadv:
 - ↓abdo wall mm tone ↓ing forced expiration power
 - difficult to get in place

Table 21.1 Obesity Surgery Mortality Risk Score

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age >45 yr</td>
<td>1</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1</td>
</tr>
<tr>
<td>Gender</td>
<td>1</td>
</tr>
<tr>
<td>Risk factors for PE</td>
<td>1</td>
</tr>
<tr>
<td>BMI ≥30 kg/m²</td>
<td>1</td>
</tr>
</tbody>
</table>

Total:

<table>
<thead>
<tr>
<th>Risk group (score)</th>
<th>Post-operative mortality risk (deaths/total number of patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A (0 or 1 points)</td>
<td>0.2%</td>
</tr>
<tr>
<td>Class B (2 or 3 points)</td>
<td>1.2%</td>
</tr>
<tr>
<td>Class C (4 or 5 points)</td>
<td>2.4%</td>
</tr>
</tbody>
</table>

Previous VTE, pulmonary hypertension, preoperative vena cava filter, or hyperventilation due to obesity.
Induction
- ramped position sniffing morning air (tragus above sternum)
- pre-oxygenation in this position essential to >80% (>90% better)
- airway:
 - NAP 4 - difficult airway x2 of non-obese:
 - aspiration with LMAs
 - diff tracheal intubation (13%)
 - airway obstruction during emergence
 - rescue techniques failed more commonly
 - preoxygenate ramped ⇒ ↑FRC, ↓aspiration risk
 - AFOI may be routine in some bariatric centres
 - good airway plan - weak assoc with ↑difficult intubation
 - assistant to pull breasts down
 - IPPV should be used (avoid SV):
 - ↑WOB
 - early airway closure
 - rapid desat
 - avoid LMAs BMI >35
 - extubate head up awake

Maintenance
- short acting anaesthetic agents to minimise post op hypovent & hypoxaemia:
 - remi & des
 - TIVA - prop & remi
- NMB monitoring and full reversal
- use high PEEP
- pressure areas
- Left lateral tilt - to minimise aorto-caval compression
- depth anaesthesia monitoring

End of case
- Suggamadex

Postop
- use routine PACU d/c criteria except:
 - aim preop SpO2 with minimal O2 as possibile
 - check no evidence of hypoventilation
 - extubating to BiPAP or CPAP good option
 - VTE prophylaxis - as x2 risk
 - if OSA:
 - reinstate CPAP if using pre-op
 - additional recovery time recommended
 - must be free of apnoeas when not stimulated
 - effective CPAP ↓risk of apnoea to near normal
 - continuous SpO2 monitoring recommended 24hrs post op (level 2 care)

Pharmacology

Calculations
- IBW in kg easily calculated using Broca:
 - Men = height (cm) - 100
 - Women = height (cm) - 105
- Lean body weight - exceeds IBW in obese but then plateaus ∴:
 - Men = 100kg
 - Women = 70kg
- Adjusted Body Weight = IBW + 40% excess

Generic
- VD altered:
- ed % of TBW (but ed actual TBW)
- ed % adipose
- ed lean body mass
- ed blood volume (& ed CO)
- altered tissue protein binding
- ed concentration of free fatty acids, cholesterol α1 acid glycoprotein

- PPB altered:
 - plasma albumin unchanged
 - ed α1 acid glycoprotein

- Drug clearance:
 - Renal blood flow
 - GFR
 - tubular secretion
 - hepatic blood blow in congestive cardiac failure

- hydrophilic drugs (eg NDNMBs):
 - similar VDs, clearance & elim half lives
 - base dose on LBW

- lipophilic drugs (eg prop, opioids (except morphine) & benzo’s):
 - ed VD
 - normal clearance
 - elimination half lives

- ed plasma cholinesterase activity:
 - sux dose on ABW up to max 200mg
 - ideal for obese ⇒ rapid onset & offset but may ⇒ quicker desat compared to roc in RSI

Specific drugs
- induction agents = LBW
 - propofol for infusion then change calculation to ABW
- NDNMBs = LBW
- Sux = ABW (max 200mg)
- Neostigmine = ABW (max 5mg)
- Suggamadex - base on total body weight or ABW
- Opioids = LBW (except alfentanil)
- Neuraxial LAs: ↓ dose by 25% as engorged epidural veins & fat impinge on volume of epidural space
- paracetamol - can be dosed more frequently due to ed clearance

Suggested dosing regimes for anaesthetic drugs

<table>
<thead>
<tr>
<th>Lean Body Weight</th>
<th>Adjusted Body Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males 100kg Females 70kg</td>
<td>Ideal plus 40% excess</td>
</tr>
<tr>
<td>Propofol induction</td>
<td>Propofol Infusion</td>
</tr>
<tr>
<td>Thiopental</td>
<td>Suxamethonium (Max 200mg)</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>Alfentanil</td>
</tr>
<tr>
<td>Rocuronium</td>
<td>Lidocaine</td>
</tr>
<tr>
<td>Atracurium</td>
<td>Neostigmine (5mg)</td>
</tr>
<tr>
<td>Vecuronium</td>
<td>Sugammadex (see package insert)</td>
</tr>
<tr>
<td>Morphine</td>
<td>Antibiotics</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>Low Molecular Weight Heparin</td>
</tr>
<tr>
<td>Bupivacaine</td>
<td></td>
</tr>
</tbody>
</table>

Midaz = same as propofol
Thromboprophylaxis
- ↑VTE risk independent of other obesity co-morbidities
- ↑↑risk post surgery
- options:
 - mechanical devices:
 - TED stockings
 - foot impulse devices
 - SCDs
 - continue all options until pt no longer has ↓ed mobility
- pharmacological prophylaxis:
 - for pts with low risk of major bleeding
 - continue until no longer ↓ed mobility (generally 5-7d)
 - no specific guidelines on dosing in obesity

Neuraxial Techniques
- very high failure rare with multiple attempts
- easier insitting position
- use ultrasound prescan to find centre & level
- epidural:
 - ↑risk of dural puncture as epidural space is smaller due to compression by fat & engorged epidural veins
 - use 75% of normal dose
 - dose in sitting position to limit cephalad spread
- spinal:
 - should use less drug (as in pregnant population)
 - CSE attractive & may help find space
By Surgery

Bariatric Surgery
- in UK indication for surgery:
 - BMI >40
 - BMI >35 with significant co-morbidities which could be improved with ↓weight
 - all non-surgical measures have been tried in order to achieve weight loss for >6months
 - BMI >50 as 1st line option
- must go through bariatric MDT Ax

Intragastric Balloon Insertion & Removal
- = insertion of 700ml silicone balloon in stomach via gastroscope
- inflated with saline & methylene blue
- balloons removed after max 6 months
- can be done under sedation/topical or GA with intubation

Preoperative
- indications:
 - BMI 25-35 - weight loss adjunct when don't qualify for bariatric surgery
 - BMI >60-70 - for people too high risk for bariatric surgery

Perioperative
- topical anaesthesia generally enough if cooperative
- L lat position used for insertion ⇒ sedation

Induction
- high risk pts:
 - sedation risk may ⇒ hypoventilation, hypoxia & airway obstruction
- very large patients poorly tolerate side lying ⇒ sit upright

Special Points
- can generally be done as a day case
- high amount of nausea post insertion

Gastric Banding
- = silicone band around top of stomach ⇒ creating small pouch above it
- small injectable port placed subcut & connected to band which is then inflatble

Preoperative
- straightforward laparoscopic procedure
- low mortality rate
- local variance but often used for lower spectrum BMIs
- pre-op paracetamol

Perioperative
- Induction
 - careful positioning
 - 2 IV lines
 - forearm cuff
 - pre-oxygenate in head up position
 - intubation mandatory:
 - VT appropriate for IBW or LBM
 - RSI is not mandatory but quick desat & difficult BMV is likely

Maintenance
- short acting agents: des & TIVA (but correct dosing can be tricky)
- ensure adequate NMB
- give x2 anti-emetics - vomiting is common & risks strain on band sutures
- give minimal intraop opioids
- place adequate LA in port sites

Extubation
- in high sitting

Post op
- slowly titrate opioids in recovery
- most dont need HDU (except OSA patients)
- early mobilisation

Gastric Bypass

- = rox-en Y bypass
- almost all laproscopic
- involves:
 - small bowel anastomosis
 - formation of a Roux limb
 - creation of gastric pouch
 - gastrojejunal anastomosis
 - lot of surgical variation
- most ask for large NGT passed orogastrically during pouch formation
 - prevents stapling of oesophagus & allow suturing around it during GJ anastomosis

Perioperative

Maintenance
- double antiemetics

Post op
- post op CPAP is safe

Special Points
- if surgeon asks for NGT post intubation to decompress stomach: place then remove
 - otherwise risk f NGT stapled into pouch
- leak testing of GJ anastomosis:
 - OG tube passed then air or methylene blue placed into pouch
 - watch for dyed fluid refluxing into mouth - suck
- post op complications:
 - anastomotic leak - signs =
 - post op tachycardia = leak until proven otherwise
 - excessive pain
 - pain on swallowing
 - bleeding: (may just observe initially)
 - melena
 - haematemesis

Sleeve Gastrectomy

- stomach divided by stapling to reduce it by 25% of original size
- portion along greater curvature is removed through small incision
- generally laparoscopic

Preoperative
- often reserved for higher risk patients as is easier & quicker than bypass

Perioperative

Maintenance
- large NG tube placed to allow surgeon to staple alongside tube & avoid stapling the oesophagus