Contents

Anatomy

- Coronary Arteries .. 3
- Valves .. 4
- Cardiac Pressures ... 4
- Pulmonary Pressures ... 4
- Chambers ... 4
- TOE view .. 4

Physiology

- PreAssessment .. 6

General Operating Procedure

- Generalised Induction ... 8

Equipment/Procedures

- Cardiopulmonary Bypass .. 10
- Intra-Aortic Balloon Pump ... 17
- Ventricular Assist Devices ... 19
- Extracorporeal Membrane Oxygenation (ECMO) 20
- Pulmonary Artery Catheters ... 23
- TOE ... 24
- ACT ... 26
- TEG ... 27
- Coag Screen .. 29
- Myocardial Protection .. 29
- Neuroprotection ... 31
- Pacemakers ... 32
- Implantable Cardiac Defibrillators 34
- α Stat & pH Stat Strategies ... 35

Drugs in Cardiac

- Heparin ... 36
- Protamine ... 37
- Tranexamic Acid .. 37
Aprotinin 37
rFVIIa 38

By Surgery ...39
on Pump CABG 39
Off Pump CABG 40
Emergency CABG (Failed PCI) 40
Aortic Valve Replacement: Stenosis 41
Transcatheter Aortic Valve Implantation 42
Aortic Valve Replacement: Regurgitation 43
HOCM /SAM 44
Mitral Valve Replacement: Stenosis 45
Mitral Valve Replacement: Regurgitation 46
Cardiac Tamponade 48
Thoracic Artery Surgery 48
Pulmonary Thromboembolectomy 50
Redo Cardiac Surgery 51
Cardioversion 51
Implantable Defibrillators 52
Transcatheter Ablation Procedures 52
Percutaneous Closure Atrial Septal Defects 53
Anaesthesia for patients with A Cardiac Transplant 54
Correction of Congenital Heart Disease 56
Fontan Circulation 58
Children With Congen Heart Disease for Non Cardiac Surgery 60
Anatomy

Coronary Arteries

- Aortic sinuses kept away from valves by eddy currents
- Orifices patent throughout cardiac cycle
- RCA & LCA arise immediately above the cusps of AV (aortic root)
- LCA supplies:
 - L circumflex - L & R atrium, lat wall of LV, SAN (45%) (I, aVL)
 - LAD - walls of L & R vent incl septum (V3-V5)
- RCA supplies - SAN (55%), AVN (90%), HIS (90%), IVS, RA & RV (II, III, aVF)
 - R marginal - R vent
 - post descending art - walls L & R vent, IVS
- dominant circulation named after which one supplies AVN:
 - 80% people R dominant - via PDA
 - 10% co-dominant
 - 10% L dominant - ∴ LMS occlusion ⇒ absolute no flow to LV

- Venous blood return:
 - Coronary sinus RA – 95% of blood
 - Ant coronary vein RA
 - Thesbian veins various cardiac chambers
 - some drain into LV contribute to physiological shunt
 - ie contributing to normal $D[A-a]O_2$
 - Others:
 - Arteriosinusoidal vessels – connect arterioles to chambers
 - Arterioluminal vessels – arteries straight into chambers
• Diagram of artery supply

Valves
• ant leaflet of mitral valve closely related to aorta

Cardiac Pressures

![Diagram of artery supply]

Pulmonary Pressures
• mean pressure gradients for pHTN (mmHg):
 ‣ mild = 25-40
 ‣ mod = 40-55
 ‣ severe = >55

Chambers

LV
• thick high pressure
• posterior in heart
• pap muscles
• chordae

RV
• thin, anterior
• moderator band
• separate chordae

Atria
• L & R atrial appendages

TOE view
• transgastric mid pap view shows all vessel territories =
Physiology

Basics
• CBF to LV occurs predominantly in diastole
• ↑HR ⇒ ↓diastolic time & no change in systolic time

Myocardial O2 supply
• Depends on:
 • O2 content =
 - Hb
 - SaO2
 - PaO2 (insignificant)
 • Myocardial blood flow =
 - DBP:
 • SBP
 • arterial compliance ie SVR
 • aortic valve competence
 • HR
 - diastolic length
 - blood viscosity - ↓ed on CPB
 - coronary vasc resistance -
 → variable vascular tone vs fixed artheromatous lesions
 - LVEDP = ↑ed pressure ⇒ ↓flow

Myocardial O2 demand
• depend on:
 • myocardial wall tension = SBP
 • HR:
 - physiological HR = optimal flow
 - ↓HR ⇒
 • longer diastolic time which ⇒ ↑CBF & fewer contractions BUT also ⇒ ↓ing diastolic pressure during prolonged diastole ⇒ ↓CBF in late diastole
 - ↑HR ⇒
 • ↑mean diastolic pressure ⇒ ↑coronary perfusion pressure BUT also ⇒ ↓time for flow to occur & ↑no of contractions
 • Blood pressure:
 - ↑bp: ↑ed disatolic pressures ⇒ ↑CBF BUT also ↑systolic pressure ⇒ ↑O2 consumption
 - ↓bp: requires ↓ed myocardial wall tension to achieve ↓O2 consumption BUT also ↓ed diastolic pressure ⇒ ↓CBF
PreAssessment

General PreAx Visit

Basics
• Standard preAx questions

Surgery
• ?artery harvesting ?side
• ?re-do

Systems R/V
• CVS:
 • IHD:
 - Angina - Canadian scale I-IV:
 • 1 = bothersome only - only during v strenuous/prolonged activity
 • 2 = mild limitation - only during vigorous activity
 • 3 = moderate limitation - symptoms everyday living
 • 4 = total limitation - angina @rest/unable to perform any activity without angina
 - ACS
 - Anti-coags
 - Heart failure symptoms
 - Anti-HTN Rx
 - Exercise tolerance -
 • METs
 • NYHA I-IV:
 • no limitation: cardiac disease but no limitation ie no SOB up stairs
 • mild: mild SOB during normal activity
 • marked limitation: comfortable only at rest. Symptoms walking short distances
 • severe limitation: Symptoms at rest. Mostly bed bound
 • Valves:
 • Which valves
 • ?pHTN
 • Warfarin
 • Ventricles/Pulmon:
 • LV:
 • EF - (aware of overestimation in MR)
 • Size - dilated or LVH
 • RV function
 • diastolic function ↑ filling pressures
 ▪ very impt - 50% pts with acute heart failure have normal EF
 ▪ EF = (SV/EDV) * 100
 • Vascular:
 • Carotids:
 • previous stroke ?CUSS
 • ?bruits
 • PVD:
 • AAA
 • ?bypass surgery
 • palpate all arteries
 • Resp:
 • Standard
• PFTs
• Renal:
 • Creatinine
• Endocrine:
 • DM ?HbA1C
 • ?end-organ damage
• GI:
 • aspiration
 • TOE contraindications:
 - ?obstructive problems in past eg ‘?food sticking ?vomiting blood ?oesophageal problems’
 • absolute CIs: stricure, web, tumour
 • relative CIs: varices, diverticula, prev GI bleed, prev surgery or radiation

Investigation
• vitals
• ECG: ?LBBB - relevant if PAC planned
• Blds incl TFTs
• PFTs - bedside spiro done on admission. May need to request PFTs
• Angio
• ECHO

Medications
• antiHTNs:
 • BBBlockers (cont ?↓dose by 50% if brady)
• Anticoags & platelets - stop, if needs bridging (eg unstable ACS) use heparin
• Sedatives: useful overnight!

Risk Scoring
• need way to calculate predicted operative mortality
• many scores eg EuroSCORE II - use calculators to ascertain based on categories:
 • patient related
 • cardiac related
 • operative related
• most impt factors:
 • emergency surgery
 • re-do
 • ↑age
 • poor LV function
 • renal dysfunction
General Operating Procedure

Generalised Induction

• aims:
 ‣ maintain CBF
 ‣ prevent tachycardia
• in critical patients surgeon should be ready at induction
• standard full monitoring + BIS
• BIS:
 ‣ no method to prevent awareness during CPB
 ‣ useful to monitor cortex during deep hypothermic arrest

Induction Agents

• Fentanyl 5-15mcg/kg
 ‣ Good:
 - ↓ or no induction agent required
 - myocardially stable esp in ↓LVF
 - analgesia
 ‣ Bad:
 - no amnesia - ?use midaz
 - ?prolong postop time
 - chest wall rigidity
• Ketamine (0-1mg/kg ie 0-100mg):
 ‣ Good:
 - haemodynamically stable - central SNS stimulation but direct -ve inotropic effect
 - good in hypovolaemic shock & tamponade
 - analgesia
 ‣ Bad:
 - ↑ed -ve inotropic effect if ↓LVf & α blockade
 - central SNS stim ⇒ ↑myocardial O2 demand
• Propofol:
 ‣ Good:
 - resets baroreceptor reflex ⇒ no ↑HR
 - fast on & off
 ‣ Bad:
 - ↓SVR ⇒ 15-40% ↓ bp at 2mg/kg (may be good for regurg lesions)
 - some -ve inotropy
• Etomidate:
 ‣ Good:
 - less CVS depression ~10-15%
 - in normovolaemia see unchanged: SV, LVEDP, contractility
 - useful in heart transplants
 - fast onset
 ‣ Bad:
 - ↓Adrenal activity
 - ↑epileptiform activity
 - ↓bp if combined with opioids
• Midazolam:
 ‣ Good:
- ↑ amnesia
- CVS stable

• Bad:
 - no analgesia
 - needs hepatic metabolism
Equipment/Procedures

Cardiopulmonary Bypass
• replaces heart & lungs to allow bloodless, stable surgical field

Gas Exchange
• Membrane oxygenators used most commonly
 • minute hollow fibres ⇒
 • diffusion distance 200um [lung 10um]
 • large surface area (2-2.5m²) [lung 70-100m²]
• Gas exchange down concentration gradients:
 • ↑gas flow ⇒ ↑CO₂ removal
 • ↑FiO₂ ⇒ ↑O₂ supply
• includes heater

Blood Pumps
• blood flow rate = P/R
• non pulsatile flow
• types of pump:
 • roller =
 - ADV: predictable low, linear CO in l/min
 - BAD: risk of pumping air, pipe burst, damage cells, micro plastic particles from tube ⇒ embolisation (spallation)
 • centrifugal pumps: flow = mass x radius x angular velocity
 - afterload dependant ie ↓flow if ↑afterload - can be a safety feature
 - ADV:
 • prevent circuit rupture
 • unable to pump air ⇒ disaster
 • ↓trauma to cells

Venous Reservoir
• 2 types:
 • hard shell (open) = allow passive removal of entrained air, can apply suction to encourage venous drainage
 • soft shell (closed) = less volume :. less blood contact with foreign material ⇒ less inflammation

Arterial Filter
• mesh of polyester fibres filer arterial blood of contaminants & leucocytes

Starting Bypass
• bypass circuit primed with
 • crystalloid
 • heparin
 • +/- mannitol & HCO₃-
• cannula:
 • arterial: 24Fr into distal ascending aorta (can use fem or axillary)
 • venous:
 - R atrial appendage with tip in IVC
 - drainage port also drains from SVC & coronary sinus
 • retrograde cardioplegia line:
 - 15F into coronary sinus - watch with TOE & observe pressure trace
Cardioplegia - delivered via a secondary circuit
- 2 delivery methods:
 - anterograde = into aortic root
 - retrograde = via coronary sinus
- intermittent 20mins
- K 20mmol = diastolic arrest
- induction = cold solution
- reperfusion = warm solution
- ventilator turned off after bypass established

Steps
1. Baseline ACT, ABG, TEG
2. Heparinise with 300IU/kg via central line - action to augment antithrombin III
 ⇐ if heparin resistance use FFP (contains antithrombin III) or recombinant antithrombin III
3. Prior to cannula: ↓ systolic bp to 80-100mmHg = ↓’s risk of dissection
4. Cannula: arterial > venous > retrograde cardioplegia lines
5. Final check ACT
6. Test arterial input - look for swing & infuseability
7. Release venous clamp ⇒ VR to CPB commences ⇒ ↓ CVP & ↓ PAP ⇒ heart empties
8. Inspect heart ⇒ confirm low CVP & head not congested
9. Flow set 2-3l/min/m2
10. Pressure 50-80mmHg. Consider higher range if carotid/renal disease
11. aortic cross clamp to isolate heart
12. cardioplegia ⇒ diastolic arrest
13. cool - typically to 32-34

TIVA or Volatile
- TIVA started or volatile given via pump
- All agents in dose dependant manner:
 - ↑VD
 - cardiac depression
 - ↓HR
- isoflurane:
 - animal models show coronary steal phenomenon:
 - ischaemia normally ⇒ targeted dilation of relevant arterioles to maximise blood flow
 - potent vasoDs like isoflurane may ⇒ non-specific vasoD in all arterioles
 - if fixed flow means loss of local autoregulation ⇒ ↑ed ischaemia
 BUT not be shown to be imp in humans
 - Iso may also be ischaemia protective via ATP sensitive K channels
- desflurane:
 - similar cardiac profile to isoflurane but slightly ↑ed SNS outflow

On Bypass
- tranexamic acid used (max 30-40mg/kg):
 - given at:
 - at start of bypass
 - infusion through the procedure
 - caution as risks of
 - epilepsy

Targets
- bypass machine delivers 2.4L/min/m2 ie typical cardiac index
• MAP target = 50-80mmHg
 → achieved by altering SVR with
 • vasoconstrictors
 • vasodilators eg GTN, phentolamine

• Blood gases & ACT checked every 30mins
 • ACT -
 - measure every 30mins
 - >480
 - beware heparin resistance if pts been on heparin preop
 • HCT target 20-30%:
 - add fluid to pump reservoir
 - remove fluid by ultrafiltration
 • Normal PaO2 & PaCO2
 • Gluc <10
 • BE < -2.5

• ECG:
 • VF should be terminated unless planned
 • electrical activity ≈ repeat cardioplegia
 • VF during rewarming needs defib
 • ectopics are common - dont panic

• Urine - aim >1ml/kg/hr

Cardioplegia:

• Administered diff ways:
 • anterograde = via coronary arteries
 • retrograde = via coronary sinus
 → monitor infusion pressure & make sure it doesnt rise

• Can be blood or crystalloid:
 • Based on Ringers solution - contains:
 - K
 - Mg
 - procaine
 • Blood -
 - assumption that it contains O2 ↓ might ↓ischaemia
 - reperfusion warm blood cardioplegia may be used towards end of bypass to wash out metabolites
 → advantages seem to be theoretical only

• 1litre renders heart asystolic
 → further doses rpted 20mins or if electrical activity

• 4deg cold solution protects heart against ischaemia

Temperature:

• Diff options depending on surgery:
 • 30-32 deg target - short operations
 • 26-28 typical
 • 16-22 deep hypothermic arrest

• Lower temps offer better cerebral protection but longer time on CPB to rewarm
• Lower temp generally reserved for complex cases

Cross Clamping & Fibrillation

• 2 options for CABG:
 • cardioplegia (asystole)
 • intermittent cross clamping with fibrillation
- method:
 • aorta clamped
 • fibrillation pad placed underneath heart to induce VF
 • graft bottom end (post lesion) is sutured
 • cross clamp removed ⇒ heart converted to SR
 • graft top end (pre lesion) is completed
- advs:
 • no cardioplegia = good because:
 ‣ ↓ incidence of complete heart block
 ‣ ECG can be inspected for resolution of ischaemia
- disadv: no ischaemia protection ⇒ surgical time must be quick <10mins

Hypotension on Bypass

- Differentials:
 ‣ haemodilution - from ↑ circuit length
 ‣ ↓ SVR, ↓ viscosity
 ‣ dilution of catecholamines
 ‣ vasoactive inflammation due to circuit contact
 ‣ drugs
 ‣ check drainage/flows

Coming Off Bypass

- team effort between surgeon, anaesthetist & perfusionist
- TRAVVEL checklist for weaning:
 ‣ T = temp
 ‣ R = rate & rhythm
 ‣ A = air
 ‣ V = ventilation
 ‣ V = aortic root venting ↓ ed & matched by arterial pump
 ‣ E = electrolytes
 ‣ L = level table & pressure transducers
- preconditions for stopping bypass:
 ‣ body temp >36.5
 ‣ K = 4.5-5mmol
 ‣ HCT >20%
 ‣ Normal pH
 ‣ HR 70-100 (+/- pacing, defibrillation, other drugs)

or…..

- A irway - check in position
- B - Lungs:
 ‣ re-establish ventilation: 100% O2
 ‣ re-inflate ensure basal expansion under direct vision
 ‣ use sustained ~30cmH2O breath. watch grafts esp IMA
- C-
 ‣ components of CO:
 - preload return blood to R side of heart,
 - afterload (vasopressors),
 - rate (target 80, check PMs), rhythm (SR or PM),
 - contractility (temp, electrolytes etc)
 ‣ Heart de-airing:
- impt in valve surgery
- various manoeuvres
- check with TOE

- D:
 - analgesia - ?given
 - anaesthesia
- E:
 - temp
- F:
 - fluids input/output
- G - aetric
- H - aematology
 - heparin - protamine
- I nfection
 - cephazolin 2nd dose 4 hrs post loading, then 8hours
- M etabolic
 - blood gas

- Final check:
 - infusions ready & able
 - PM leads checked and working
 - defib present & ready

- Venous bypass line slowly clamped & heart allowed to fill & eject
- Usual practise to come off pump with heart relatively underfilled
 \[\rightarrow\] prevents overdistension in already impaired ventricular function

- perfusionist
 - transfuse 100ml fluid boluses
 - Need to assess heart performance & filling
 - commence inotropic support if required
- Protamine -
 - only to be drawn up after off CPB
 - administer slowly peripherally
 - 1mg/100units heparin used
- SE’s:
 - hypotension - may need rapid IVF boluses
 - pulmonary HTN
 - anaphylaxis

Problems Coming off Bypass
- check
 - fluid/volume status esp R heart
 - pacing
 - inotropes
- Consider:
 - IABP
 - VAD/ECM

Post Bypass
- ensure adequate anaesthesia & pain relief
- MAP (>65) & SBP (<140) kept under close targets
• Maintain:
 - Normal electrolytes
 - Normal coagulation - TEG repeated

Complications
• minimal in 1st 24hrs but include:
 - haemolysis
 - platelet damage
 - Bleeding - multifactorial reasons:
 (significant = >400ml in 1st hour, >300ml each hr thereafter)
 - preop anticoags
 - hypothermia - rewarming post bypass can be difficult to sustain. Easy to lose heat to peripheral compartment with ↓temp at core
 - intraop anticoags:
 - incomplete heparin reversal
 - hypothermia
 - poor clotting factors in pump blood
 - protamine itself in the wrong dose = anticoagulant
 - CPB insult:
 - endothelial dysfunction ⇒ activation of coagulation ⇒ fibrinolysis ⇒ inflam & consumption of factors
 - thrombocytopenia = dilution, consumption
 - platelet dysfunction - ↓temp, contact on foreign substances, heparin, protamine
 - fibrinolysis:
 - primary - endothelial plasminogen activators
 - secondary - fibrin formation
 - Cell saver blood = rbcs only
 ↳ everything else washed out

▷ strategies to minimise:
 - minimise CPB time
 - warmth
 - ACT & TEG to guide protamine
 - TXA
 - transfuse based on TEG & coag screen

• other problems:
 - ↓venous drainage
 - occlusion/dislodgement of cannulae
 - aortic dissection
 - gas embolisation
 - inflammation/SIRS:
 - humoral ⇒ activation of endothelium ⇒ neutrophil adhesion, aggregation & activation
 - cellular immunity ⇒ complement, fibrinolytic, coag systems
 • cerebral problems - ↑ed risk if >2hrs CPB:
 - Stroke -
 • 1-5% risk
 • non fatal or fatal
 • Factors ↑risk=
 • ↑age
 • HTN
 • aortic atheroma
 • previous stroke
DM

surgery type eg aortic arch > valve > CABG

aetiology = hypoperfusion & emboli

emboli sources:
 - proximal aorta atheroma (most sig site) - ultrasound can help avoid sites
 - other sources: air, FB, cellular aggregates, fat, calcium

strategies to avoid=
 - optimum perfusion pressures
 - normal BSL
 - pH control (see later):
 - mild hypothermia - use a stat
 - deep hypothermia - use pH stat
 - careful de-airing of heart prior to coming off CPB
 - careful temperature control - target 33-35

 - coma
 - encephalopathy
 - POCD - short (up to 80%) or long term (up to 5-20%)
 - delirium
Intra-Aortic Balloon Pump

- Inserted percutaneously via femoral artery
- Sized on height of patient
- Can use for 5 to 7 days
- Most important affects achieved:
 - ↓afterload
 - ↑coronary perfusion

\[\therefore \text{only} \] ↑CO significantly if LV is limited by ischaemia or high afterload

<table>
<thead>
<tr>
<th>Aortic pressure</th>
<th>Cardiac</th>
<th>Blood flow</th>
<th>LV</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓ systolic</td>
<td>↓ afterload</td>
<td>↑ coronary BF</td>
<td>↓ volume</td>
</tr>
<tr>
<td>↑ diastolic</td>
<td>↓ preload</td>
<td>↑ CO</td>
<td>↓ wall tension</td>
</tr>
<tr>
<td>↑ Windkessel effect</td>
<td>↑ RBF (up to 25% by ↑ CO)</td>
<td>↓ systolic pressure</td>
<td></td>
</tr>
</tbody>
</table>

- Pump stroke is triggered by either:
 - Arterial pressure trace:
 - inflation - just following dicrotic notch (just after AV closure) (beginning of diastole)
 - deflation: just prior to ejection on upstroke of arterial trace (just before AV opening) (end of diastole)
 - ECG - more preferable
 - inflation - middle of T wave

- \(A = \) systolic pressure
- \(B = \) dicrotic notch
- \(C = \) augmented bp
- \(D = \) ↓ed end diastolic pressure
- deflation = start at peak of R wave

- helium used to inflate/deflate balloon
- inflation (beginning of diastole) causes:
 - ↑ed diastolic pressure
 - ↑CBF & O2 delivery
 - no ↑ in O2 demand
- (end of diastole) immediately prior to systole ⇒ deflation:
 - ↓ afterload
 - offloads LV ⇒ ↑ LV ejection
- can set 1:1; 1:2; 1:4
- required heparinisation
- must check position of pump on CXR (tip 3-5cm below L subclavian artery)
 - not occluding major arteries off aortic arch ⇒ check periph pulses

- indications:
 - ongoing myocardial ischaemia
 - cardiogenic shock
 - weaning from CPB
 - MR eg acute waiting surgery
 - VSD
 - stunned myocardium
 - bridge to transplant
- IABP less effective if:
 - ↑ HR
 - irregular rhythm
 - ↑ aortic compliance or ↓ SVR
- contraindications:
 - absolute:
 - AR > mild
 - severe aortic atheroma
 - HOCM/SAM
 - aortic dissection
 - end stage with no anticipation of recovery
 - relative:
 - AAA
 - tachyarrhythmia
 - severe PVD
 - sepsis
- Complications:
 - vascular:
 - arterial injury
 - aortic injury
 - thromboembolism
 - ischaemia - limb or visceral
 - compartment syndrome
 - balloon:
 - rupture
 - gas embolism
 - cardiac tamponade
 - incorrect position
 - other:
- haemorrhage
- infection
- haemolysis
- thrombocytopenia

By A Hollingworth

A = too early inflation ⇒ ↑afterload
B = too late inflation ⇒ failed diastolic augmentation
C = too early deflation ⇒ can see flow reversal in cornaries
D = too late deflation ⇒ high afterload decr cardiac output

Ventricular Assist Devices
- Diff types available to support ventricles or both: RVAD, LVAD, BIVAD
- Position:
 - LVAD - LA to ascending aorta
 - RVAD - RA to main pulmonary artery
- require sternotomies
Indications

- Acute heart failure:
 - cardiogenic shock - bridge to recovery
 - e.g. MI, post cardiotomy, viral cardiomyopathy, post donor
- chronic heart failure:
 - post ischaemia & limited heart transplant
 - bridge to transplant

Patient Selection

- arrhythmias:
 - atrial not a concern
 - ventricular must be Rxed
- AR: any can be problematic as a VAD \(\Rightarrow \) ↑gradient between MAP and LVEDP \(\Rightarrow \) ↑regurg
- MS - needs to be corrected
- septal defects - corrected to prevent R to L shunt

Ongoing Treatment

- lifelong warfarin
- aspirin
- battery care & technical follow up

Anaesthesia for VAD Patient

PreOp
- preoptimise as any cardiac patient

IntraOp
- strict asepsis
- anticoagulation continued as long as possible
- invasive monitoring
- maintain normal preload

Extracorporeal Membrane Oxygenation (ECMO)

- advantage of supporting heart & lung without need for sternotomy
- needs big resources, specialist team with constant monitoring, not for long term
- membrane oxygenators allow better CO2 removal than O2 addition

Types

- VA:
 - allows gas exchange & haemodynamic support
 - centrifugal external pump
 - bypasses heart - part or all of blood
- VV:
 - facilitates gas exchange
 - no haemodynamic support
 - centrifugal external pump
- AV:
 - facilitates gas exchange by using pts own arterial pressure to pump blood
 - generally femoral \(\Rightarrow \) femoral
 - dependant on cardiac output
VA ECMO
- drainage commonly from IVC or RA
- return via ascending aorta or femoral artery
- indications:
 - refractory reversible cardiogenic shock
 - bridge to VAD or cardiac transplant
 - salvage during cardiac arrest - after 10mins of adequate but unsuccessful CPR
- advs:
 - ↓ cardiac work \(\Rightarrow\) ↓ cardiac O2 consumption
 - allows proportion of blood \(\Rightarrow\) lungs \(\Rightarrow\) final content of blood depends on mixture
- disadv:
 - if using peripheral VA ECMO head & coronaries receive proportionally low O2 blood compared to LLs

VV ECMO
- used when cardiac function is preserved
- used to provide oxygenation & rest lungs
- 2 methods:
 - x2 cannula: IJ (oxy) +/- femoral (de-oxy)
 - x1 cannula new dual chamber cannula - overcomes recirculation problem & bleeding problems
- indications:
 - ALI/ARDS
 - graft dysfunction post lung transplant
- adv:
 - ↓ ITP \(\Rightarrow\) off load R heart
 - lower risk of thromboembolic problems
 - allows full endocrine functions of lung

AV ECMO
- pumpless connection via oxygenator
- cannula in fem artery & vein
- must have CI >2.5l/min/m2
- adv:
 - simpler system which is smaller & requires no battery for transport
- disadv:
 - mortality high in ARDS
- indications:
 - severe hypercapnia, resp acidosis & only moderate hypoxia

Management
- often marked improvement in haemodynamics
- can extracorporeal haemofiltrate off ECMO circuit to remove fluid
- anticoagulation impt:
 - heparin \(\Rightarrow\) ACT 1.5x normal
- thrombocytopaenia a problem \(\Rightarrow\) regular platelet transfusions

Contraindications
- irreversible organ damage
- multiorgan failure
- unable to anticogulate
- VA ECMO = severe AR or aortic dissection

Complications
- haemorrhage - higher risk in arterial cannulation
• thrombosis - in VA ⇒ stroke
• infection
• circuit failure catastrophic
Pulmonary Artery Catheters

Indications
• risk stratify pts to decide on need for PAC:
 ‣ low risk = no PAC:
 - good LVF
 - surgery will not ↑load on LV eg CABG, AVR for AS
 ‣ intermediate risk = +/- PAC:
 - ↓LVF
 - surgery with ↑ed loading on LV expected eg double surgery, MVR for MR, double valve, AVR, complex aortic cases
 - if unsure PA sheath may be compromise
 ‣ high risk = PAC:
 - as intermediate but also:
 • pHTN +/- ↓RVF

Contraindications
• absolute: mechanical tricuspid valve
• relative:
 ‣ VSD, ASD
 ‣ LBBB, severe vent arrhythmia
 ‣ bioprosthetic tricuspid valve, tricuspid endocarditis
 ‣ pneumonectomy
 ‣ vent pacing wire dependant

Advantages
• early detection of ischaemia ⇒ see diastolic dysfunction ⇒ if LV ⇒ ↑pulmonary pressures
• RV vs LV failure
• ongoing monitoring in ICU

Insertion
• insert sheath
• flush all lines & put 3 way taps on lumens
• connect PAC to pressure transducer
• insert with curve directed medially ⇒ advance 10cm & look for trace
• floating:
 ‣ inflate balloon & advance
 - 20-30cm = RV trace
 - 35-50cm = PA trace
 - Advance another 5-10cm until wedge pressure appears
 ‣ deflate balloon
 ➔ continuous wedging may ⇒ PA rupture
• lock in place
• initiating CPB - safest to withdraw catheter 5cm
• if you need to withdraw catheter ALWAYS deflate balloon first

Complications
• Arrhythmia:
 • if irritable heart or intolerable of arrhythmias: safer to wait for heart to be exposed prior to floating PA catheter
 ➔ eg ectopics, stenotic lesions
always be ready to defib

Knotting ⇒
- surgical fix - direct exploration & cutting line then removal via open heart surgery
- interventional radiology -

Damage to R side valves
PA rupture: highest in elderly, pHTN. Unlikely need to wedge - do very gently!!!
RBBB: if has pre-existing LBBB ⇒ complete HB . need to be ready to pace or CPB
misinterpretation of data -
 - abnormal wave form
 - poor wedging
 - if give fluid bolus need to wait for response as numbers are averaged over time

HITT - heparin & latex coated lines

TOE

Advantages over TTE:
 - don't have to image through chest wall/lungs
 - Better images of post structures eg aorta & LA
 - probe left in place to allow temporal comparison
 - can see tamponade sitting posteriorly

Basics

- 4-7Mhz
- Piezo-electric: time = distance
- speed of sound = 1540m/s
- omniplane probe:
 - 0 deg = beam perpendicular
 - 90 deg = in line with probe ie vertical
 - 180 = beam opposite to 0 deg
Indications

- general for intra-op:
 - all open heart ops & thoracic aortic surgeries
 - some CABGs
 - non-cardiac with suspected CVS pathology & will be useful
 - guiding Rx of catheter based intracardic procedures

- indications above TTE:
 - eval of structures in far field ie aorta & L atrial appendage
 - eval of prosthetic heart valves
 - eval of valvular abscesses
 - vent’ed pts
 - chest wall injuries
 - ↑↑BMI
 - pts unable to move into L lat decubitus
 - critically ill pts in who TTE vies unobtainable & TOE will alter Rx

Contraindications

- Absolute:
 - perf hollow viscus
 - active GI bleeding
 - strictures/obstructions/tumours/scleroderma

- relative:
 - Cx spine inj
 - prev oesophageal: surgery, varices, barretts, diverticulum
 - severe coagulopathy
 - HH

- Complications:
 - Injury: sore throat, teeth damage, mucosa, oesophageal bleeding & tearing
 - ETT displacement
 - ischaemia from probe pressure
 - thermal injury - turn off when on CPB
 - resp difficulty - if not vent’ed
 - CVS problems - ↓MAP, ↓HR

Complications

- 1-3% complication:
 - sore throat
 - airway obstructions
 - dislodgement of ETT
 - trauma - teeth, oesophagus
 - SNS stim
 - infection

Views

- Mid oesophageal point = 20cm from incisors
 - MV parallel to this

- Order to imaging:
 - LA - ?PFO use bubble saline injection
 - LV - dilatation & hypertrophy
 - R side of heart

- Standard views are now 28
- Essential views:
• ME AV SAX - 30deg
• ME AV LAX - 100 deg
• ME 4Ch - 0 deg
• ME 2Ch
• TG SAX - 0 deg with flexion probe

Assessment of Function
• 3 regions to assess: basal, mid, apical
• Ventricular Function Methods:
 ‣ fractional shortening = EDD-ESD/EDD
 \[\Rightarrow \text{may not be homogenous .: can be unreliable} \]
 ‣ fractional area change = trace 1 slice diameter at EDD & ESD
 ‣ 2Ch ME (ant & inf wall) & 4 Ch ME (lat & ant septal)
• Diastolic Dysfunction:
 ‣ PW doppler through MV tips & Ax velocity
 ‣ Waves:
 - E = early filling once MV opens
 - A = atrial contraction
 - E<A = normal
 ‣ Need to check for pseudonormalisation:
 - check LA size
 - PV flow
 - interatrial septum movement
• Cause of hypotension:
 ‣ ↓preload - kissing ventricles
 ‣ ↓contraction - RWMA or global dyskinesia
 ‣ ↓SVR - heart fills well & empties more than expected \(\Rightarrow\) kissing ventricle

<table>
<thead>
<tr>
<th>Table 4 Evaluation of hypotension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ejection fraction</td>
</tr>
<tr>
<td>--------------------</td>
</tr>
<tr>
<td>Hypovolaemia</td>
</tr>
<tr>
<td>Ventricular failure</td>
</tr>
<tr>
<td>Reduced systemic vascular resistance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LVED</th>
<th>Men</th>
<th>Fem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norm</td>
<td>42-59</td>
<td>39-53</td>
</tr>
<tr>
<td>Mild</td>
<td>60-63</td>
<td>54-57</td>
</tr>
<tr>
<td>Mod</td>
<td>64-68</td>
<td>58-61</td>
</tr>
<tr>
<td>Sev</td>
<td>>69</td>
<td>>62</td>
</tr>
</tbody>
</table>

ACT
• 1ml blood place in tube containing magnetic rod & activator - usually celite or kaolin
• tube warmed to 37 deg & rotated \(\Rightarrow\) clot.
• resistance to movement of magnetic rod stops the timer
• normal = 100-140s
• crude test with 10% error spread
• Other effects on ACT:
 ‣ ↓temp \(\Rightarrow\) prolongs time
 ‣ haemodilution \(\Rightarrow\) prolongs time
• Post protamine ACT aim is <10% variance from baseline ACT
TEG

- using TEG guided algorithm shown to ⇒ ↓ consumption of products & transfusion related complications post CABG

Method

- blood placed in cuvette which is rotated through 4deg in 6cycles/min
 - imitate sluggish venous flow
- pin sensor is inserted into sample ⇒ clot formation between cup & pin
- speed & strength of clot is measured which tests:
 - platelet function
 - fibrinolysis
 - coagulation cascade

![Coagulation and Fibrinolysis Diagram](image)

- main variables determined:
 - **R time**:
 - = time until see first evidence of clot
 - norm = 4-8min
 - causes:
 - long >10min = anticoags, factor deficient, ↓ fibrinogen ⇒ **FFP (or protamine)**
 - give protamine 0.5mg/kg if >3mins diff between K TEG & KH TEG
 - short = enzymatic hypercoagulability ⇒ **anticoags**
 - **K value**:
 - = time from end of R until clot reaches 20mm := speed of clot formation
 - 1-4mins
 - causes:
 - long = anticoags, ↓ fibrinogen, ↓ platelets ⇒ **give cryo**
 - **α angle** (functionally similar to K value)
 - = angle of curve made as K is reached
 - faster rate of fibrin generation ⇒ ↑ pin oscillation amplitude ⇒ larger angle
 - norm = 47-74deg
- causes as K value \(\implies \angle < 45^\circ \text{ give cryo} \)
- MA (max amplitude)
 - = reflects clot strength 80-90% platelets, 10-20% fibrinogen
 - 55-73mm
 - causes:
 - ↓ed size = ↓plts, poor platelet function, ↓fibrinogen \(\Rightarrow \angle < 50\text{mm} \text{ give platelets} \)
 - ↑ed size = hypercoagulable, ↑plts \(\Rightarrow \text{ give anti platelet agent} \)
- A30 (amplitude at 30min)
 - = decrease in clot size 30mins after MA
 - TEG often not allowed to run out that far
 - depends on fibrinolysis
 - norm <7.5%
 - ↓’ed size causes =
 - primary = hyperfibrinolysis \(\Rightarrow \text{ give TXA} \)
 - secondary = DIC = support coag products as required

Dosing Summary
- TEG to monitor coagulopathy:
 - \(\alpha \) angle < 45deg - give 1unit/30kg cryo
 - MA <50mm - give platelets (40-50mm = 1 pool; <40mm = 2 pools)
 - R time >10mins - give FFP (11-15 = 1unit; 15-20 = 2units; >20=4units)

Advantages over Coag Screen
- PT & APTT:
 - poorly represent cell based model of haemostasis
 - show time to initiation of clot formation - no further info thereafter
- TEG shows:
 - speed to clot formation
 - strength of clot
 - whether excessive clot being formed
- other TEG advs:
 - can see clot trace evolve in near pt testing (coag screen up to 45min in lab)
 - more reliable in liver disease

Deficiencies of TEG
- None will assess function:
 - specific deficiencies: Factor 13, Alpha2 antiplasmin deficiency, vWF deficiency
 - antiplatelet agent effects ie aspirin & clopidogrel
- always risk of excessive bleeding
- is a functional reserve in concentration of clotting factors:
 - haemophilia A = no symptoms until factor 8 level <5%
- to determine specific cause for defective clotting need to do
 - specific factor assays
 - tests for anti-factor antibodies
Coag Screen
- targets in ICU
 - INR 1.5-2 ⇒ give 2 FFP; >2 4 FFP
 - fibrinogen <1.5 ⇒ give 1 unit cryo /30kg of body weight
 - platelet transfusion if any of:
 - <50
 - antiplatelet agent in last 5 days
 - high bleeding

Myocardial Protection
- pathophysiology of myocardial injury:
 - ischaemia:
- depletion of high energy phosphates
- intracellular acidosis
- altered calcium homeostasis
- direct myocellular damage

• re-perfusion:
 - intracellular Ca overload
 - generation free O2 radicals
 - complement activation
 - endothelial cell-leucocyte interactions
 - myocellular oedema

• 3 states of myocardial cells:
 • stunning:
 - = post acute ischaemia impairment
 - viable myocardium remains
 - if no further injury ⇒ complete recovery
 • hibernation:
 - chronic underperfusion ⇒ down regulation of contractile elements
 - can be improved with revascularisation
 • myocardial necrosis:
 - = irreversible

Strategies of Protection

• include:
 • Cardioplegia
 • hypothermia
 • LV venting : avoids distension ⇒ ↓wall tension Use TOE
 • de-airing - RCA esp vulnerable to air emboli
 • pre-conditioning
 • glycaemic control

• work by ↑O2 delivery & ↓O2 requirement

Cardioplegia

• antegrade:
 • normal pathway
 • may miss stenotic areas

• retrograde:
 • into coronary sinus
 • drains via coronary ostia into aortic root ⇒ drained via aortic root cannula
 • may miss RV

Hypothermia

• causes:
 • ↓electromechanical activity
 • inhibits apoptosis
 • ↓O2 consumption

• effect is controversial

Preconditioning

• =phenomenon where tissue exposed to brief non lethal ischaemia becomes relatively resistant to damage from subsequent prolong ischaemia

• Advantages:
 • ↓infarct size
 • ↓contractile dysfunction
 • ↓arrhythmias
leucocyte adhesion

- types:
 - early =
 - minutes & lasts 1-3hrs
 - causes: local mediators
 - late =
 - 12-24hrs ⇒ lasts 2-4days
 - causes: altered gene expression

- unknown MOA - theory:
 - up regulation of PKC ⇒ phosphorylation of K-ATP channels ⇒ ↓ed hyperpolarisation ⇒ ↓Ca influx ⇒ ↓phase II of AP
 - K-ATP channels see in mitochondria & cell membrane

- drugs which may trigger =
 - volatiles
 - morphine
 - adenosine
 - ACEI
 - β agonists
 - CaCl

- antagonists of preconditioning:
 - ↓temp
 - ↑BSL
 - methylxanthines
 - sulphonylureas

- Strategies:
 - pre-op ACEI
 - volatiles: 0.5MAC pre CPB; >1MAC post
 - morphine 0.25-0.5mg/kg
 - mild hypothermia only
 - normoglycaemia
 - stop sulphonylureas

Neuroprotection

- post CPB:
 - injury or stroke:
 - CABG = 2-6%
 - Valve surgery = 4-13%
 - subtle changes seen in 60% pts in CPB
 - some dysfunction = 35% @ 5yrs
 - POCD 83% pts in 1st week postop

Risk Factors

- age >75
- HTN
- carotid stenosis
- DM
- prior stroke
- post by pass ↓bp, arrhythmias
- complex procedures & long CPB time (>2hrs)

Etiology

- emboli - gaseous, particulate from calcifications, air, atheroma
• hypoperfusion
• loss autoregulation: DM, ↓ temp, DHCA, prev stroke
• DHCA

IntraOp Cerebral Monitoring
• see neurosurgery notes

Prevention Strategies
• Surgical strategies:
 • minimise CPB time
• Embolism:
 • TOE - to check for aortic plaques prior to cannulation/clamping
 • minimise no of clampings
 • cell saver for blood
 • filter use
 • de-airing techniques
• Hypoperfusion:
 • pre-op CUSS in high risk patients
 • NIRS
 • CVP & MAP
• Hypocapnia:
 • ⇒ cerebral vasoconstriction ⇒ esp bad with ↓MAP & anaemia
• Inflammation:
 • minimal volume CPB circuit
 • minimise blood transfusions
• other:
 • stable haemodynamics
 • BIS - ?avoid deep anaesthesia
 • control arrhythmias
 • glucose control
 • α-stat pH management = better cerebral autoregulation
 • close temp control
• pharmacological (no drug proven):
 • EEG burst suppression ⇒ 50% ↓ CMRO2
 - thio/propofol/isoflurane
 - ketamine = found to be neuroprotective following cardiac arrest
 ↩ general plan is to ensure EEG isoelectric before on pump & ↓CPB time
• DHCA:
 • hypothermia 15-20C with paralysis
 • anterograde & retrograde perfusion ⇒ cerebral ischaemia tolerance

Pacemakers
• routine insertion of epicardial pacing wires
 • ventricle
 • +/- atria

Indications
• asystole
• sinus brady with inadequate CO
• heart blocks
• suppression of arrhythmias
Codes

<table>
<thead>
<tr>
<th>Chamber paced</th>
<th>Chamber sensed</th>
<th>Response to sensing</th>
<th>Extra options</th>
<th>Cardioverting options</th>
</tr>
</thead>
<tbody>
<tr>
<td>V = ventricle</td>
<td>V = ventricle</td>
<td>I = inhibited</td>
<td>p = programmable</td>
<td>p = pacing</td>
</tr>
<tr>
<td>A = atrium</td>
<td>A = atrium</td>
<td>T = triggered</td>
<td>m = multiprogramme</td>
<td>s = shocking</td>
</tr>
<tr>
<td>D = dual</td>
<td>D = dual</td>
<td>D = dual</td>
<td>c = communicating</td>
<td>D = dual</td>
</tr>
<tr>
<td>O = none</td>
<td>O = none</td>
<td>O = none</td>
<td>r = rate adaptation</td>
<td>O = none</td>
</tr>
</tbody>
</table>

- Epicardial pacing ⇒ first 3 functions relevant

DDD
- may inhibit or pace each chamber with preserved R-R interval
- if SAN & AVN working ok then will do nothing
- if failure of either node PM will take over
 - benefit by synchronised A & V with atrial kick
- useful unless pt in AF as don’t see synchronised atrial contraction
 - used if competitive underlying rhythm & inadequate AV conduction

AAI
- Atrial demand inhibitory mode
- it inhibits itself if senses pts own p waves
- use if not in AF & no significant AV delay
 - used if competitive underlying rhythm & good AV conduction

VVI
- Vent demand inhibitor mode
- inhibits itself if senses pts R wave in ventricle
- asynchronous pacing
 - used if competitive underlying rhythm is AF

DOO
- dual chamber pacing (A-V sequentially) with no sensing
- good intraop as surgical stim & diathermy will not be mi-sensed
- is a risk of R on T phenomenon with no sensing ⇒ VF
 - used if PM dependant & risk of diathermy

VOO
- asynchronous vent pacing
 - risk of R on T when starting mode
 - used if PM dependant & risk with diathermy & AF

AOO
- asynchronous atrial pacing
 - used if PM dependant, diathermy & adequate AV conduction
Settings

dynamic depending on pt & lead position:
- rate 80-90/min
- atrial amp = 5v (default 10v on our boxes)
- vent amp = 8V (default 10v on our boxes)
- atrial sensitivity = 0.5mV
- vent sensitivity = 2mV
- AV interval 150ms
- atrial refractory period = 400ms

Practical Issues

- Should be seen for PM check at least <1yr prior to op (ideally within 3months)
- need to know:
 - reason for PM insertion
 - battery status
 - base line rate/rhythm
 - magnet setting - not a modern strategy as diff PMs have different magnet settings
- Concern intraop =
 - electromagnetic interference ⇒ inappropriate pacing/reprogramming/damage
 - pacing wires can act as conduits for heat ⇒ damage endocardium
- diathermy is dangerous, bipolar is safe
 - can minimise risk by placing pad away from PM (>20cm) & using short sharp bursts
- emergency:
 - asynchronous vent pacing = VOO
 - (theoretical risk of VF on initialising VOO but modern machines have safety mechanism to avoid R on T)
- surgeries:
 - MRI - avoid
 - lithotripsy - avoid path of sound
 - ECT - asynchronous
- **disable** ICDs preop if diathermy to be used in case ⇒ shock
 - if need to defib then should place pads away from PM (or better AP pads)
 - avoid sux if possible - fasciculations can effect sensing modes in PM
 - send back for PM check post op

Implantable Cardiac Defibrillators

Indications:
- VF or sudden cardiac death survivors
- VT causing syncope no caused by MI or other correctable cause
- minimally symptomatic VT with EF <35%
- previous MI, LVEF <35% and sustained VF/VT on EPS
- long QT with syncope or FHx of sudden cardiac death
- Brugada syndrome with VT/VF
- arrhythmogenic right ventricular hyperplasia with VF/VF
- HCOM with VF/VT

ICD Code
1. **Shock chamber** (0 = none, A = atrium, V = ventricle, D = dual)
2. **Chamber to which anti-tachycardia pacing is delivered** (0 = none, A = atrium, V = ventricle, D = dual)
3. **Means of detection of tachyarrhythmia** (E = intracardiac electogram, H = haemodynamic means)
4. **Pacemaker code**
- recent counter shock episodes
- effects of magnet interference - many different modes on machines so should assume magnet mode = emergency mode
- continue anti-arrhythmic and anti-failure medications
- CXR and ECG
- deactivation of defibrillation and anti-tachycardia function pre-operatively so diathermy isn't interpreted as VF or VT (very important in lithotripsy and ECT) -> 'monitor only' mode

Intraoperative
- ideally have the cardiac technician present to enable the defibrillation function
- have defibrillator close @ hand (attach prior to surgery)
- place pads @ cardiac apex and below right clavicle

Postoperative
- nurse in HDU with resuscitation equipment close by
- cardiac technician interrogation and reprogramming post surgery

α Stat & pH Stat Strategies

- **pH stat:**
 - benefit = ↓seizure, ↓ICU length of stay, ↓mortality
 - addition of CO2 to pump circuit
 - this corrects for ↑solubility of CO2 at lower temps:
 - PCO2 37deg = 40mmhg ⇒ 20deg = 16mmHg
 - if uncorrected this would obviously ⇒ ↑pH from 7.4 to 7.8
 - ∴ addition of CO2 results in:
 - total body CO2 is ↑ed
 - pH remains the same at lower temp
 - better in DHCA ⇒ improved clinical outcomes

- **α stat:**
 - as temp ↓s H+ & OH- dissociation constant increases ⇒ ↓H & ↑pH
 - CO2 is NOT added to blood
 - ∴ total body CO2 remains same but at low temp pH ↑s
 - at mild-mod hypothermia α stat maintains cerebral blood flow metabolism coupling
 - pH stat obtunds autoregulation
Drugs in Cardiac

Heparin

Heparin Resistance

- causes:
 - hypercoag states:
 - ATIII deficiency
 - septicaemia
 - arteriosclerotic disease, unstable angina, DVT, PE
 - Drugs: heparin, GTN
- Treatment:
 - give more heparin
 - if >600units/kg been given then consider giving supplemental ATIII
 - ATIII found in FFP so give 2-4 units
 - bivalirudin
 - direct thrombin inhibitor
 - rapid & reversible effect (half life 25mins)
 - no specific reversal available
 - clearance unaffected by renal dysfunction
 - monitored with ACT & TEG
- Alternatives to heparin eg in HIT:
 - bivalirudin
 - tirofiban

Adverse Reactions

- excessive bleeding:
 - ↓ed risk with LMWHs
 - ↑ed risk if vit K deficiency or concurrent anti-plt Rx
- hypersensitivity reactions:
 - type 1 IgE mediated eg bronchospasm/anaphylaxis
 - anaphylactoid reaction – involves alternative complement pathway
- thrombocytopaenia:
 - HITTS:
 - = heparin induced thrombocytopaenia
 - if concurrent thrombosis = HITTS
 - 1-6% incidence (much less with LMWH)
 - more frequent with bovine lung heparin
 - 2 types:
 - type 1:
 - onset 1-4 days post exposure
 - transient/self limiting ↓platelets to ~50
 - = direct heparin induced plt agglutination ie non immune mechanism
 - type 2:
 - present 4-14 days after 2nd exposure to heparin
 - platelet ↓ to ~10 & assoc with thromboembolic phenomena
 - immune mediated plt aggregation by PAF 4, IgG & IgM antibodies
 - development of antibodies to platelets following 1st heparin exposure. ie occurs on next exposure
 - = type II hypersensitivity reaction
• usually resolves rapidly on stopping heparin (can last for 2/12)
• must avoid UFH forever, but can use LMWH (with caution)

• thrombosis:
 • prolonged Rx
 • ↓ AT-3 activity
 • ↓ plasmin activity
 • ↑ K:
 o ↑ risk if have problems with K homeostasis
 o MOA:
 • inhibition of final step in pathway for production of aldosterone
 • ↓ number and affinity for AT II receptors ↓ aldosterone secretion
• chronic use of heparin >1 month (e.g., pregnancy):
 o ↓ bone density in 30% pts
 o MOA - ?↓ osteoblasts ↑ osteoclasts
 LMWH less risk

Protamine

• administration of protamine on CPB ⇒ death
• only drawn up when needed
• cannot neutralise heparin bound to plasma proteins/endothelial cells
 ⇐ ∴ repeat small boli useful
• dose = 1mg/100 units of heparin used
• infuse over 10 mins
• side effects:
 • histamine induced ↓ bp
 • pulmon vasoC
 • anaphylaxis
 • anticoagulant effect - impairs platelet activation, transient thrombocytopenia

Tranexamic Acid

• = antifibrinolytic
• useful if given before CPB
• bolus:
 • 10-25mg/kg bolus
 • 1-5mg/kg/hr (need to ↓ in renal dysfunction)
• side effects:
 • ↓ seizure threshold
• note if critical LMS stenosis may consider giving after heparin

Aprotinin

• No longer used
• BART trial
 • = aprotinin vs lysine analogues
 • danger in aprotinin with ↑ ed:
 - cardiogenic shock
 - CHF
 - MI
 - trend to massive bleeding
rFVIIa

- off label use
- no good RCT in cardiac surgery
- but observed trend towards thromboembolic complications
By Surgery

on Pump CABG

• = bypass stenosis in coronary artery with arterial or venous graft

Preoperative

• common medical co-morbidities:
 • HTN
 • COPD/smoking
 • DM
 • stroke
 • CRF
 • Hx of angina/ACS

Cardiac Assessment

• Assess LV:
 • failure signs eg PND, orthopnoea
 • exercise ECG
 • angiography - within 12months
 • ECHO - TOE or TTE
 • Exercise tolerance

Premed

• anxiolysis & stress can lead to comorbidity
• drugs:
 • night time sedation eg zopiclone
 • morning: benzodiazepine
• continue all meds except:
 • antiplatelet agents
 • ACEIs

Perioperative

MAP 65-70mmHg, HR 65-90, have GTN ready

• Induction
 • drugs:
 - fentanyl 10-15mcg/kg
 - propofol uncommonly used
 • A line awake, CVL asleep
 • monitoring:
 - 5 lead ECG- II for rhythm, V5 for ischaemia

• Maintenance
 • anticipate surgical steps:
 - sternotomy is painful (more fentanyl) & must temporarily stop ventilation (empty lungs)
 - low SBP for aortic cannulation
 - heparin prior to bypass

• End of case:
 • optimal filling vital at end due to:
 - bleeding
 - diuresis - mannitol
 - vasodilation due to re-warming
 • if cardioplegia used - temporary pacing wires generally inserted
Postop
- ICU
- check bloods & TEG/clotting
- CXR
- Monitor drain output
- WWW
- SBP <120-140mmHg

Special Points
- If severe L mainstem disease:
 - must maintain diastolic pressures & normal HR to preserve perfusion
- If unstable angina:
 - use PAC
 - intra-aortic balloon pump
- thoracic epidurals are used in some centres:
 - adv = excellent pain relief & haemodynamic stability
 - disadv = risk of epidural haematoma & paraplegia
- if arterial grafts used eg internal mammary or radial:
 - prone to early spasm
 - use GTN infusion post op

Off Pump CABG
- ↓ed risks & complications compared to on pump:
 - mortality 2.9 ⇒ 2.3%
 - complication rate 12% ⇒ 8%
- advs may include less:
 - stroke
 - dissection
 - fluid
 - K given
 - expense
- disadv:
 - suboptimal revascularisation
 - ↑graft failure
- as for on pump but use a ‘stabiliser’ to keep heart as still as possible
- pt usually heparinised in case of urgent need for CPB
- 1-10% will need to go on CPB
- keep pt warm & well filled
- avoid ↑HR - β blockers or CCBs
- ↑risk of arrhythmia with handling - keep K & Mg high/normal
- ↓MAP common when surgeon manipulates heart:
 - heart tilted to vertical position - blood has to flow upwards into ventricle
 - A/V regurg common
 - ↑preload, Trendelenburg, IVF & vasopressors, Rx tachycardia
- for R/post descending coronary artery grafts: pt placed in Trendelenburg to ↑VR

Emergency CABG (Failed PCI)

Preoperative
- pt may be peri-arrest with need to correct ischaemia
- good arterial access should remain from cath lab ie femoral lines
- aim for CVS stability with inotropes/vasopressors
• IABP if time can help:
 • ↑diastolic pressure ⇒ ↑CBF
 • augment LV ejection ⇒ ↑LV function
• consider CVL preop
• pts may have been given multiple antiplatelet agents ∴ will require platelets post bypass

Perioperative
• Induction
 • PAC if time able
 • CVS stable induction
 • adrenaline as required

Postop
• restart IABP
• no urgency to extubate
• high risk of renal dysfunction

Aortic Valve Replacement: Stenosis
(if mixed stenotic & regurgitant lesions then should manage dominant lesion)
• commonest valve replacement (severe AS 2% 65-85; 4% >85)
• Stenosis ⇒ effects on the LV:
 • myocardial hypertrophy with no ↑in LV volume (concentric)
 • poor diastolic function ie relaxation (stiff non compliant)
 • high wall tension
 ▸ ⇒ ↑O2 demand & higher filling pressures
 • if long standing severe AS can ⇒ LV failure:
 - ↑ing LVEDP ⇒ MR ⇒ ↑pulmon art pressure ⇒ potential RV failure
• type of valve used:
 • younger pts = mechanical valves as longer lasting but need warfarin
 • older pts = homograft (biological tissue) - anticoag not required but last ~15yrs
• Aortic stenosis = always slow

Preoperative
• change in rhythm eg AF can ⇒ LV failure
• Ax LV function & CBF = ECHO & angiography

Parameters of Assessment
• significant obstruction to LV outflow =
 • LV-aorta gradient >40mmHg
 • aortic orifice <0.8cm
• Surgery indicated if gradient:
 • (good LV) >70mmHg
 • (poor LV) >50mmHg
• If known gradient (with small area) is ↓ing ≈ LV failure

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Grading of AS in adults: BSA, body surface area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>Aortic jet velocity (m s⁻¹)</td>
<td><2</td>
</tr>
<tr>
<td>Peak gradient (mm Hg)</td>
<td><10</td>
</tr>
<tr>
<td>Mean gradient (mm Hg)</td>
<td><5</td>
</tr>
<tr>
<td>Valve area (cm²)</td>
<td>3–4</td>
</tr>
<tr>
<td>Valve area indexed (cm² m⁻² BSA)</td>
<td>>0.85</td>
</tr>
</tbody>
</table>

Cardiac - 41
Perioperative

• Induction
 • HR = avoid extremes - esp tachycardia
 \[\downarrow \text{diastolic time} \Rightarrow \downarrow \text{CBF} \& \uparrow \text{O2 demand}\]
 • SR gives atrial kick which can contribute ~20-40% of filling into stiff ventricular
 • Preload:
 - maintain to aid LV filling
 - beware vasodilators
 • SVR:
 - maintain with \(\alpha_1\) agonists eg metaraminol or norad
 - any \(\downarrow\) in diastolic pressure \(\Rightarrow\) critical \(\downarrow\) CBF
 • Contraction - stiff/thick ventricle may need adrenaline

• Maintenance
• End of case:
 • TOE to assess LV function & valve performance

Post-Bypass

• AV node damage may require pacing
• preload:
 • volume remains essential - ventricle still stiff
 • use Dual pacing to gain coordinated atrial contraction
• PAC may help to guide filling

Special Points
• good myocardial protection by cardioplegia \(\Rightarrow\) good outcomes

Transcatheter Aortic Valve Implantation

• commonly used in frail elderly requiring AVR
• other indications:
 • porcelain aorta
 • severe kyphoscoliosis
 • sig cirrhosis
• mediastinal radiotherapy
• can be done
 • transapically - mini-thoracotomy
 - requires more analgesia
 - blood ready in angio suite for apical ventriculotomy
 - consider cell salvage
 • transfemorally - percutaneous
 - may be done under LA if TOE not required

Preoperative
• Set up as for CPB

Perioperative
• Procedure involves rapid intermittent ventricular pacing - allows
 • valvotomy
 • placement of prosthetic valve
• Prior to atrial pacing:
 • SBP >100mmHg
 • adrenaline ready in case of stunning
• stop ventilating when valve is being positioned to stabilise field
• Post valve insertion may see marked ↑bp
 → have esmolol, GTN ready

Postop
• early extubation is possible with TAVI
• complications:
 • cardiac - any incl tamponade
 • vascular - eg rupture, tearing
 • neurological
 • valve regurgitation - minor paravalvular regurg occurs in >50%

Aortic Valve Replacement: Regurgitation
• usually assoc with
 • aortic root dilation or dissection
 • +/- Hx of endocarditis
 → generally not septic when operated on
• cardiac physiology in AR:
 • LV overload
 • LV dilatation
 • ↑SNS drive ⇒
 • ↑HR
 • ↑contractility
 • ↑periph vasoC
 • fluid retention ⇒ ↑preload

Preoperative
• surgery indicated if symptomatic
 • angina = end stage symptom

Perioperative
• regurg lesion = classic: full, fast & forward
• consider:
 • HR:
- fast HR \(\Rightarrow\) ↓ diastolic time \(\Rightarrow\) ↓ regurg
- CO is rate dependant . aim for ~90/min
- ↓ DBP \(\Rightarrow\) ↓ perfusion pressure so ↑ HR \(\Rightarrow\) ↑ DBP \(\Rightarrow\) ↑ CBF

Preload:
- LV stiff & large . need adequate filling
- SR is useful but pts often in AF
- consider Dual pacing

SVR:
- anaesthesia \(\Rightarrow\) ↓ SVR \(\Rightarrow\) ↓ regurg fraction \(\Rightarrow\) forward flow
- vasodilators are similar but may also \(\Rightarrow\) ↓ VR/preload so need caution
- too much ↓ SVR may need to \(\Rightarrow\) ↓ DBP \(\Rightarrow\) ↓ CBF \(\Rightarrow\) caution

contraction:
- if LV function poor \(\Rightarrow\) inotropic/inodilator support

Special Points

IABP:
- contraindicated in AR
- may be useful with replacement valve post CBP

careful bp control post CPB to prevent rupture of root:
- SBP<120
- MAP>65

HOCM /SAM

- HOCM = bulging of septum \(\Rightarrow\) occlusion of LVOT \(\Rightarrow\) ↑ vent pressures \(\Rightarrow\) vent dilatation \(\Rightarrow\) MR \(\Rightarrow\) ↑ LA size \(\Rightarrow\) malignant arrhythmia
- SAM - ant mitral valve leaflet occludes LVOT in systole
 \(\downarrow\) can co-exist

Perioperative

need to keep ventricle open . if ↓ MAP \(\Rightarrow\) IVF & α agonists

goals:
- preload: keep up = diastolic dysfunction
- SVR: keep up
- contractility:
 - avoid increasing
 - -ve inotropes are useful eg βblocker, Ca channel antagonists, volatiles
- HR: 60-80 to allow diastolic filling
- rhythm: SR critical, AF common

post correction:
- same goals
Mitral Valve Replacement: Stenosis

(stenotic lesion = slow & steady)

- prosthetic mitral valves often mechanical
- most pts anticoag’ed due to chronic AF

Preoperative

- classic presentation (pregnancy in exam):
 - frail
 - flushed
 - AF on warfarin
 - fixed cardiac output
 - +/- Pulmon HTN
- almost always 2nd to rheumatic heart disease
 \[\rightarrow\] may have been asymptomatic for >20yrs

- indications for surgery:
 - SOB on mild exertion/rest

- medications:
 - cont anti-arrhythmics
 - convert warf to heparin

- Investigations:
 - ECHO -
 - need to Ax pulmon artery pressures
 - vent function
 - angio

- numbers:
 - valve areas similar to AS (normal is a bit bigger) 4...2...1

<table>
<thead>
<tr>
<th></th>
<th>Norm</th>
<th>Mild</th>
<th>Mod</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Gradient</td>
<td><5</td>
<td>5-10</td>
<td>>10</td>
<td></td>
</tr>
<tr>
<td>Valve Area cm²</td>
<td>4-6</td>
<td>>1.5</td>
<td>1.5-1</td>
<td><1</td>
</tr>
<tr>
<td>Peak Pressure</td>
<td><30</td>
<td>30-50</td>
<td>>50</td>
<td></td>
</tr>
</tbody>
</table>

Perioperative

- cardiac physiology:
 - HR
 - mitral flow is relatively fixed
 - keep HR <100
 - SR if possible
 \[\rightarrow\] allows max diastolic time & CBF
 - Preload:
 - does not need to be augmented pre CPB
 - too much preload may \(\Rightarrow\) RV failure
 - too little preload \(\Rightarrow\) ↓↓bp
 - SVR:
 - VERY afterload dependant
 - chronic fixed CO usually \(\Rightarrow\) compensatory ↑SVR to maintain MAP
 - avoid ↓ in SVR otherwise \(\Rightarrow\) ↓DBP \(\Rightarrow\) ↓CBF
- avoid venodilation otherwise \(\Rightarrow \) ↓VR \(\Rightarrow \) ↓CO \(\Rightarrow \) heart unable to compensate

- PVR - pulmon HTN 2nd to ↑PVR & ↑Pulmon art pressure may be partially reversible
 - ↓consider techniques to ↑pulmon vasoD:
 - maintain filling pressures
 - avoid ↓PaO2 & ↑PaCO2 (more impt than concern about ↑ITP)
 \(\Rightarrow \) ↑IPPV \(\Rightarrow \) ↑ITP \(\Rightarrow \) ↑PVR but vasodilation more impt
 - avoid acidosis - check ABGs regularly
 - pulmonary vasodilators:
 - use if PAP > \(\frac{2}{3} \) systemic pressure
 - choices:
 - Nitric oxide
 - inhaled prostacyclin
 - PDE inhibitors eg sildenafil, milrinone

- contraction:
 - severe MS \(\Rightarrow \) pulmon HTN \(\Rightarrow \) RV failure
 - LV normally unaffected until end stage disease
 - inodilator (adrenaline) may be required if RV is failing

- HR:
 - surgery may disrupt conducting pathways
 - pacing +/- chronotropic agents may be required

Induction

- full monitoring
- PAC - helps to Ax:
 - PAP
 - PVR
 - filling
 - inotropic requirement

Post CBP

- TOE following valve insertion
- targets:
 - preload:
 - obstruction to flow has been removed so keep well filled
 - SVR:
 - ↓SVR will now encourage forward flow
 - PVR: maintain pulmon vasoD \(\Rightarrow \) ↑ed RV & LV function
 - Contraction:
 - RV support via inotropic agents eg adrenaline

Special Points

- PAPs take days/weeks to ↓:
 - continue good pulmon vasoD care as above

Mitral Valve Replacement: Regurgitation

(fast & full & forward for a regurgitant lesion)

- causes incl:
 - primary = myxomatous degen, rheumatic disease, endocarditis, MV prolapse
 - secondary = ischaemia to papillary mms, dilated LV

Preoperative

- comorbidities:
 - IHD \(\Rightarrow \) ACS \(\Rightarrow \) papillary mm rupture
 - acute regurg \(\Rightarrow \) pulmon oedema
- AF - in 75%
- R heart failure: MR ⇒ ↑PAP ⇒ RVF

ECHO
- LV function often over-estimated preop (EF <60% = severe LVF)
 - pulmon circulation provides low pressure release system for poor LV
 - regurgitant fraction:
 - **severe** MR = regurg jet fills LA >8cm²
 - **mild** MR = regurg jet fills LA <4cm²
- severity relates:
 - PAP
 - chronic significant MR = ↑ed PAP

Perioperative

Cardiac Physiology

- **HR**:
 - HR >70 ⇒ minor effect on systole length
 - less imp than in AR but encourages forward flow

- preload: filled
- SVR:
 - ↑SVR ⇒ ↑regurgitation ⇒ avoid vasoconstrictors
 - if ↓bp ⇒ give IVF
- PVR:
 - avoid pulmon vasoC due to R heart failure. (see MVR:stenosis for vaso D care)
- Contractility:
 - rarely needed pre bypass
 - if acute MR: IABP ⇒ ↓afterload & ↑LVF function

Induction

- PAC always indicated to Ax PAP

Post Bypass

- LV function:
 - replacement valve ⇒ LV has to work harder (no pressure release to pulmon circulation)
 - risk of LVF & need for inotropes/inodilators

- Preload:
 - adequate filling
- SVR:
 - ↓SVR will benefit forward flow & CO
- PVR:
 - vasculature often reactive & can spasm vasoC ⇒ good vasoD care impt
 - adequate filling will prevent pulmon vessel collapse ⇒ ↑PVR
- Contraction:
 - inotropic support likely

Special Points

- IABP may be helpful in short term for failing LV
- Pacing required if conduction system damaged
- Repair instead of replacement is ↑ing in frequency: Anaesthetic Rx is same
Cardiac Tamponade

- key questions:
 - local (eg around RA) or global
 - acute or chronic
- signs:
 - pulsus paradoxus + electrical alternans
- ideally drain while awake
- use ketamine
- keep spont breathing if possible until surgeon ready

Perioperative

- targets:
 - preload = ↑ give volume
 - afterload = unchanged
 - contractility = ↑ i.e. avoid -ve inotropes
 - HR = ↑ as CO is rate dependant
- Post correction can deepen anaesthesia

Induction

- classically keep spont venting if practically possible
- prep pt pre-op before starting

Thoracic Artery Surgery

- replacement of ascending aorta with tubular graft
- may need deep hypothermic circulatory arrest
- 2 main pathologies:
 - aneurysm
 - dissection
- causes of aneurysm:
 - HTN
 - hereditary conditions eg Marfans syndrome
- comorbidites:
 - IHD - 65%
 - dilation of root with AR
- aneurysms classified:
 - type A = ascending aorta to brachiocephalic artery
 - surgical Rx
 - type B = arch & descending aorta
 - medical Rx
- if arch Rx is planned - need deep hypothermic circulatory arrest
- emergency or planned operations
- if aortic root involved may need:
 - AV replacement
 - re-implantation of coronary arteries

Type A Corrections

- high mortality 11-30%
- may require
 - femoral CPB pre-induction/sternotomy
 - DHCA
Preoperative
• Emergency dissections Rx:
 • control bp & HR:
 - SBP <120, HR <100
 • bleeding
 - consider entering a PA sheath or RIC line
 - X match 6 units urgently
 - warn lab of potential for MTP
 • fluid resus - guarded. permissive hypotension is ok if pt mentating & conscious

Perioperative
Induction
• must avoid ↑SBP otherwise may ⇒ rupture
• once stable should Rx:
 • HR - avoid ↓ & ↑HR
 • SVR - reduce
 • preload - keep filled
 • contractility - avoid inotropes otherwise may ⇒ rupture of dissection extension
• dissection/surgical clamps may interfere with invasive arterial monitoring
• TXA should be used
• femoral artery cannulation usually required:
 • done because ascending aorta is to be resected
 • prior to cannulation: heparin (300IU/kg) & ACT >400s

Post Bypass
• bleeding & control of arterial pressure v impt
 • SBP must be kept <120
• dissection may have involved renal & mesenteric vessels ⇒ monitor kidney/gut perfusion
• steep head down tilt used to allow air out of aortic graft

Deep Hypothermic Circulatory Arrest (DHCA)
• If aortic arch is to be operated on it is likely required
• 8-15% mortality; stroke 7-11%
• key points:
 • protection of CNS
 • not possible to perfuse cerebral vessels reliably on bypass
• ↓temp effects:
 • ↓CMRO2 - 6-7% for every 1deg C
 • protects cerebral integrity during reperfusion
• max safe duration of deep hypothermic circulatory arrest (DHCA) @ 18degC
 • adults ~ 45min
 • neonates ~ 60mins
• cerebral protection in DHCA:
 • head packed in ice
 • careful cooling & warming
 • acid base management - pH stat used as better outcomes in DHCA
 • haemodilution - to HCT of 20%
 • glycaemic control
 • drugs added to pump prime:
 - barbituate eg thiopental 7mg/kg
 - steroids eg methylprednisolone 15mg/kg - need to be given ~6-8hrs prior to procedure
 - mannitol 0.5g/kg
 • surgical procedures to perfuse brain:
- retrograde cerebral perfusion - cold oxygenated blood sent into SVC
- anterograde perfusion - via catheters into both common carotid arts
 → allow slightly less cold temps to be used eg 22-25degC
• shorter DHCA the better as post op neuro problems is proportional to time of DHCA
• DHCA initiation:
 • vasodilator (eg GTN) used - aids rapid cooling & prevents reflex cerebral vasoC
 • circulation is arrested - all infusions & pumps stopped
 • measure 2 temps:
 - core (bladder) - must reach <20degC
 - nasopharyngeal temp = cerebral temp
• DHCA rewarming:
 • remove head ice packs
 • switch on warming blankets - set <10degC above pt temp to avoid burns
 • start propofol infusion - as tolerated
 • check coags - frequently require products
 • vasodilator eg GTN can be used to maintain vasoD & help rewarming
 • mannitol (0.5g/kg) may be given to encourage diuresis
 • core temp @35degC ⟹ start inotrope to ↑ cardiac function
• coming off bypass:
 • takes time to rewarm
 • temp goals to allow attempts to come off CPB:
 - skin = 33degC
 - core >37degC
• Complications:
 • stroke
 • other neurological impairment
 • coagulopathy

Pulmonary Thromboembolectomy
• =use of CPB to allow embolism retrieval

Preoperative
• pt often collapsed with resuscitation in progress
• a healthy heart requires 50-80% of pulmonary trunk to be obstructed before RV failure
• pt may have received thrombolysis
• urgent CPB is essential for chance of survival

Perioperative
• if decision made to attempt surgery move with no delay

Induction
• rapid induction
• inotropes as required
• heparin 300IU/kg
• start CPB asap

Maintenance
• massive airway haemorrhage may be a problem with difficult ventilation:
 • frequent suctioning
 • DLT

Post Bypass
• HR - normal
• Preload - keep well filled
• Contractility - Inotropic support likely
SVR - ↓SVR via vasodilators can be useful

Pulmonary pressures:
 - likely ↑reactivity
 - good pulmon vasodilators care imp
 - adrenaline to support RV function may be required

Postop
- Delay heparinisation post CPB for at least 24hrs to ↓surgical bleeding

Special Points
- ↑↑R sided pressures may ⇒ opening of foramen ovale ⇒ R to L shunt ⇒
 - hypoxia
 - ?stroke if emboli showering
- Capnography monitoring is not reliable on induction:
 - caused by ↓↓pulmonary blood flow
 - following successful embolectomy ⇒ dramatic improvement in EtCO2

Redo Cardiac Surgery

Risks
- RV laceration ⇒ severe bleeding
- arrhythmia
- damage to prev coronary grafts

Preoperative
- often poor LV function

Perioperative

Induction
- standard monitoring
- risk of torrential bleeding - RV may be stuck to underside of sternum
 - wide bore access essential eg PA sheath
 - have blood in theatre
 - femoral cannulation prior to starting with CPB team on standby for urgent on bypass

Maintenance
- risk of VF at sternotomy/dissection of adhesions - have defib pads on patient
 - use of diathermy may obscure your ECG monitoring - look at A line trace
- damage to prev coronary graft during dissection possible - look at ECG
- coagulopathy is common -
 - TXA
 - monitor TEG

Postop
- ↑ed risk of post op bleeding
- poor LV function may be problematic

Cardioversion

Preoperative
- commonest rhythm = AF
- ensure normal K & Mg prior to procedure
- if AF >24hr:
 - LA must be checked for clot with TOE prior to cardioversion
 - can use propofol sedation
• if clot ⇒
 - delay for 3 weeks of anticoagulation
 - continue anti-coag for 4 weeks post cardioversion

Perioperative

Induction
• guarded induction - low doses required
• use FM unless aspiration risj
• obese pts with difficult airway can be defib’ed laterally
• reduced doses of energy needed
• ensure synchronisation

Implantable Defibrillators
• used for pts at risk of malignant arrhythmias
• procedure complexity varies widely:
 - simple = 2 venous wires placed transvenously to R heart - sensing & shock
 - complex =
 - replacement PM
 - coronary sinus catheterised to gain access to LV myocardium
• during procedure VF induced to test device
 ↳ pt should be sedated
• usual access is via L cephalic vein & fluoroscopy

Preoperative
• Assess functional cardiac reserve:
 - LA & sedation if pt compromised
• check if on anticoagulants

Perioperative
• remote anaesthesia

Induction
• A line if ↓ contractility
• prophylactic Abx’s used
• sedation plan:
 - propofol TCI
 - midaz & fentanyl
 ↳ deepen prior to VF testing
• if defib unit is to be placed sub-muscular - may need period of deeper sedation

Post Op
• location to recover pt must be considered

Special Points
• post VF/defib - may see periods of myocardial stunning & ↓bp ⇒ support as required
• existing PM & diathermy being used ⇒ may lose PM function

Transcatheter Ablation Procedures
• broadly same concerns as for implantable defib
• long term success ~70%
• technique:
 - pulmonary vein ostial segmental disconnection (OSD)
 - L atrial circumferential ablation (LACA) - need to pass wires through foramen ovale
• procedures take >3hrs
• plan:
- light GA +/- ETT depending on need for TOE
- TCI prop & remi:
 - volatiles may suppress AVNRTs
- full monitoring
- keep warm

Practicalities
- non stimulating long procedure
- if converting AF -
 - must exclude atrial thrombus first with TOE ∴ need ETT
 - septal puncture requires heparin to ACT 25-300
- pt must not move: remi or NDNMBs
 - systems adjust for resp movement but low VTs often used
- if hypotension must always consider aortic puncture, pericardial effusion/tamponade
- positioning:
 - on table is difficult
 - watch for brachial injury if arms above head
- NG tube:
 - locates oesophagus
 - can get tubes with rapidly reacting thermistors ⇒ warning of heat injury to oesophagus
 - withdraw TOE probe into prox oesophagus during ablation

Complications
- worldwide mortality of 1:1000
- must always consider pericardial bleeding & exclude
- Cryo -balloon -
 - phrenix nerve close to R upper pulmon vein
 - phrenic nerve is paced & diaphragm action is monitored
 - ∴ must not be paralysed at this point
- risk factors:
 - >75yr
 - heart failure

Percutaneous Closure Atrial Septal Defects
- 2 indications for septal closure:
 - ASD for shunt lesion:
 - causes:
 - ostium secundum = only one amenable to percutaneous closure
 - ostium primum
 - sinus venosus
 - unroofed coronary sinus
 - ECG: RBBB & axis deviation (direction depending on type)
 - PFO for cryptogenic stroke
 - failure of primum & secundum to adhere at one edge of fossa ovalis
 - PFO seen in up to 27% of people
 - L to R flow - usually limited by a flap
 - R to L flow - limited by ↑L atrial pressures
 - ECHO done after stroke/TIA to exclude PFO
 - closure can ↓risk of further stroke 33% to 7%
Preoperative
• standard

Perioperative
Induction
• TOE essential ⊙ ETT
(intracardiac ECHO is evolving ⇒ inserted via fem vein meaning sedation is sufficient

Maintenance
• heparin required

End of case

Postop
• Pt to remain supine for 2hours until venous sheath removed
• antiplatelets prescribed post op

Special Points
• Complications:
 • Air embolism
 • arrhythmias - AF & flutter common
 • thrombus on device
 • embolisation of device
 • pericardial haemorrhage & tamponade

Anaesthesia for patients with A Cardiac Transplant
• 1yr survival = 90%; 10 yr = 50%

Complications of Cardiac Transplant
• include:
 • donor coronary artery disease
 • rejection
 • immunosupression
 • associated disease eg DM, epilepsy, HTN (2nd to ciclosporin), pre-eclampsia
 • atypical infections eg CMV, listeria, toxoplasma gondii

Donor Coronary artery Disease
• =commonest cause of death >1yr post transplant
• is immunologically mediated ie not from pre-existing atherosclerosis
• pts presentation:
 • will not get chest pain - as heart not innervated
 ↩ although long term may see some sympathetic re-innervation ⇒ CP
 • symptoms of LV dysfunction
 • arrhythmias
• must maintain CPP during anaesthesia

Rejection
• acute rejection - pt in 1st yr
• avoid cannulating RIJ if possible - site of biopsy screening
• S&S of rejection:
 • unexplained weight gain / fluid retention
 • fever
 • ↓function on ECHO

Immunosupression
• triple Rx:
- azathioprine
- cyclosporin - nephrotoxic, multiple interactions
- prednisone
- common side effects:
 - infection
 - malignancy
 - mSK problems
 - chronic renal impairment

Physiology

Atria & SAN
- donor atria are sutured to remnants of recipient atria
- recipient atria remain electrically active but limited impact on ECG
- donor heart dependant on its own sinus node
- loss of blood supply to SAN ⇒ persistent brady cardia requiring PM
- RBBB occurs in 10% of donor hearts

Innervation & HR
- donor heart has no autonomic innervation
- resting HR 90-100 due to no resting vagal tone
- see no reflex HR changes with stimulating activity eg laryngoscopy
- see rapid swings in bp: no intrinsic rapid homeostatic adjustments in HR to changes in drug induced ↓↑SVR
 \[\Rightarrow \vdots \text{ must maintain good preload} \]
- exercise response:
 - blunted response with gradual HR changes only
 - from endogenous catecholamine response

Innervation & Drug Response

Table 2 Pharmacology after cardiac transplantation

<table>
<thead>
<tr>
<th>Drug</th>
<th>Effect in recipient</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenosine</td>
<td>4-fold increase in sinus and atrioventricular nodal blocking effect</td>
<td>Denervation supersensitivity</td>
</tr>
<tr>
<td>Digoxin</td>
<td>Minimal delay in atrioventricular nodal conduction</td>
<td>Denervation</td>
</tr>
<tr>
<td>Atropine</td>
<td>No effect on heart rate</td>
<td>Denervation</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>Increased contractility and chronotropy</td>
<td>Denervation supersensitivity</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>Increased contractility and chronotropy</td>
<td>Denervation supersensitivity</td>
</tr>
<tr>
<td>Isoproterenol</td>
<td>Normal chronotropic effect</td>
<td>Denervation</td>
</tr>
<tr>
<td>Glyceryl trinitrate</td>
<td>No reflex uchycardia</td>
<td>Baroreflex disruption</td>
</tr>
<tr>
<td>Pancuronium</td>
<td>No tachycardia</td>
<td>Denervation</td>
</tr>
<tr>
<td>Succinylcholine</td>
<td>No bradycardia</td>
<td>Denervation</td>
</tr>
<tr>
<td>Neostigmine</td>
<td>No bradycardia</td>
<td>Denervation</td>
</tr>
</tbody>
</table>

- loss of action of anticholinergics eg atropine
- no action of dig as vagal activity no longer influences HR

Anaesthesia
- keep simple, maintain preload, use direct acting chronotropics (atropine doesnt work)

Preoperative
- seek follow up program results from transplant coordinator:
 - ECHO
 - rejection status - biopsy
 - coronary diseases - angio
 - CMV status
• seek advice about periop immunosupression ?given IV

Perioperative
- practically impt issues:
 - blood transfusion - must receive CMV -ve blood
 - strict asepsis for all procedures

Induction
- normovolaemia vital to maintain preload
- monitoring:
 - PAC - if no PM
 - intraop TOE - preload & contractility

Maintenance
- if hypotension:
 - IVF
 - vasocontractors
- direct acting chronotropic agents ready eg adrenaline & isoprenaline
- ext pacing machine also required

Postop
- invasive lines should be removed asap ⇒ ↓risk of infection

Correction of Congenital Heart Disease

Preoperative
- psychological preparation for pt & parents
- key areas:
 - History:
 - Risk factors for respiratory adverse events
 - Bloods -
 - any sign of infection may cause problems post CPB
 - Cardiac failure -
 - pressure or volume overload?
 - poor feeding
 - failure to gain weight
 - sweating
 - ↑HR, ↑RR, hepatomegaly
 - pulmonary HTN = PAP>25mmHg at rest?
 - x8 more likely to have complications
 - risk in pts with:
 • L to R shunt
 • obstructed venous drainage
 • ↑LAP
 - common in AV septal defects, tricuspid atresia, trisomy 21
 - need careful pulmon vasc care on cessation of CPB
 - cyanosis?
 - very high risk group as often have concurrent failure, pHTN, arrhythmias
 - causes ↑risk of
 - bleeding
 - hyperviscosity - can lead to intracerebral thrombosis

↓ these children have poor cardiac reserve, will tolerate ↓SVR very poorly
↓ often have large L to R shunt ⇒ high FiO2 will ↑shunt flow rather than systemic perfusion
- RFs:
 - <5yr ⇒ cerebral vein & sinus thrombosis
 - dehydration
 - fever
 - IDA
- use fluids to ↓Hb if >180
- consider TXA & ready blood products

- Arrhythmias:
 - all should have preop ECG
 - RBBB common but benign
 - high risk:
 - Vent ectopics worrisome - ~30% die suddenly
 - single ventricle circulation ~30% death arrhythmias
 - low risk: ventriculotomy or RV to PA conduit with normal ECG

- potential sites for vasc access
- other congenital syndromes?
 - Di George - need irradiated blood products
 - CHARGE syndrome -
 - choanal atresia ⇒ no nasal intubation
 - midface hypoplasia & micrognathia ⇒ difficult oral intubation

Perioperative

Induction Drugs
- circulation times longer - wait
- ketamine IV induction agent of choice:
 - no effect on SVR
 - ↑MAP
 - well tolerated in pHTN
- propofol not liked:
 - worsen cyanosis in children with R to L shunt as ↓↓SVR
- neonates have rate dependant CO:
 - pancuronium liked as ⇒ THR
- fentanyl good - high doses may delay extubation

CPB
- priming volume of pump = >x2 child total blood volume ⇒ risk of haemodilution
 - often add blood usually added to prime
- target MAPs vary by age:
 - neonate = 30mmHg
 - young adult = 50mmHg
- decision on α stat & pH stat:

Post CPB
- modified ultra filtration (MUF):
 - action:
 - removes excess body water ⇒ ↑haematocrit
 - removes some inflam mediators
 - shown to ↑cardiac output & ↓SVR

Postop Complications
- divided into:
 - arrhythmias
 - significant bleeding:
 - >5ml/kg in first 2 hours
- 1ml/kg in subsequent hours
 - blood loss >10ml/kg ⇒ surgical r/v
 - sudden ↓ in drain output ⇒ suspect tamponade
- SIRS -
 - peaks 8-12 hrs post op
 - MUF & steroids
- pHTN:
 - ↑RV afterload ⇒ ↓LV preload ⇒ ↓CO
 - ↓lung compliance ⇒ ↑WOB
 - start pHTN care
- low cardiac output syndrome

Table 2: Specific complications associated with specific lesions

<table>
<thead>
<tr>
<th>Lesion</th>
<th>Complication</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVSD</td>
<td>Atrioventricular valve regurgitation</td>
<td>Minimize overload or stretch on the repaired valve using afterload reduction</td>
</tr>
<tr>
<td></td>
<td>Arhythmias</td>
<td>(milrinone, SNP)</td>
</tr>
<tr>
<td></td>
<td>Pulmonary hypertension</td>
<td>Maintain normothermia, correct electrolyte abnormalities</td>
</tr>
<tr>
<td></td>
<td>RV outflow tract obstruction</td>
<td>Avoid hypoxia, hypercapnia, acidosis</td>
</tr>
<tr>
<td>TGA</td>
<td>Corona ischaemia</td>
<td>Avoid overtension of heart, use small (5 ml kg⁻¹) fluid bolus’s</td>
</tr>
<tr>
<td></td>
<td>LV dysfunction</td>
<td>Afterload reduction</td>
</tr>
<tr>
<td></td>
<td>Arhythmias</td>
<td>Maintain normothermia, correct electrolyte abnormalities</td>
</tr>
<tr>
<td>Tetralogy of Fallot</td>
<td>RV dysfunction, associated with RV failure and LCOS</td>
<td>RV afterload reduction; maintain high CVP, reduce PVR, reduce LAF (improve contractility). Milrinone reduces PVR and improves diastolic function</td>
</tr>
<tr>
<td></td>
<td>Arhythmias</td>
<td>Maintain normothermia, correct electrolyte abnormalities</td>
</tr>
<tr>
<td>Single-ventricle repair, e.g. Fontan</td>
<td>Cardiac output is dependent on PBF, where PBF=(CVP–LAP)/PVR</td>
<td>Keep CVP high (head-up and elevate legs); LAP low (maximize contractility, maintain sinus rhythm, consider milrinone); PVR low (good oxygenation and analgesia; early spontaneous ventilation; avoid amebactia)</td>
</tr>
<tr>
<td></td>
<td>Pleural effusions and liver dysfunction</td>
<td>Monitor and treat accordingly</td>
</tr>
</tbody>
</table>

Special Points
- Some surgery can be done without CPB:
 - coarctation of aorta
 - PA banding - done to limit excess pulmon blood flow as temporising procedure
 - shunt procedures - augments pulmonary blood flow

Fontan Circulation
- used in patients with congen heart disease & 1 ventricle
- procedure diverts all venous blood into the pulmonary vasculature without passing into the heart
- systemic & pulmonary systems in parallel & survive due to shunts
- palliative procedure

Indications
- all congen heart defects where biventricular repair not possible eg
 - tricuspid atresia
 - pulmonary atresia with intact vent septum
 - hypoplastic L heart syndrome
 - double inlet LV or double outlet RV
 - complete AV septal defect
• preconditions:
 • SR
 • good vent function
 • good sized pulmon arteries

Surgical Technique
• multi staged process not done in neonates due to high PVR
• interstage mortality 5-30%
• step 1 = systemic-pulmonary shunt (eg Blalock Tausig Shunt) (A-A):
 • remove systemic obstruction
 • provide pulmonary blood flow just sufficient to oxygenate blood
 • usually see conduit placed between subclavian artery to pulmonary artery
 → highest risk step
• step 2 = Sup cavo-pulmonary connection (eg bidirectional Glen shunt) (V-A):
 • done after PAs have grown ⇒ ↓ed PVR
 • stage 1 ligated
 • bidirectional shunt
 • SVC sutured onto pulmon artery
 • ventricle receives:
 - deoxyHb from IVC (via atrial septal defect)
 - oxyHb from pulmon veins
• step 3 = completion:
 - performed at 1-5yrs when PA's even larger ⇒ ↓↓PVR
 - IVC directed into pulmonary artery - usually by extracardiac conduit

Complications of Fontan Circulation
• ↓ventricular function ⇒↓exercise tolerance:
 • fixed HR
 • unable to vary SV - impaired VF & fixed preload
• arrhythmias - mostly atrial
• shunts:
 • volume overload
 • chronic desaturation
• protein losing enteropathy:
 • protein loss into gut
 • causes:
 - ↓ed thoracic duct drainage due to ↑SVC pressures
 - mesenteric vasc inflamation
• developmental deficit:
 • multiple bypass, thrombotic events, chronic hypoxaemia
• thromboembolism:
 • atrial scaring
 • all pts need anticoagulation - warf or anti-platelet

Anaesthetic Management
• principles maintain:
 • SVR
 • PVR
 • valve function
 • rhythm
 • contractility
• preload = atrial pressure - CVP
Preoperative
• high risk paradoxical air embolism
• standard detailed pre op Ax

Perioperative
Induction
• mandatory A line & CVP trend
 ➔ demonstrates pulmonary pressures
• avoid -ve inotropes eg thiopentone
• ketamine ideal - as no change SVR

Maintenance
• low conc of volatiles + remifent good combination
• target SpO2 95% only
• good PVR care
• guided fluid administration eg with CVP
• spont venting ideal - if can avoid hypercarbia
 ➔ IPPV ➔ ↑ITP ➔ ↓VR ➔ ↓CO
 ➦ use low RR, rapid insp time, low tidal volumes

Postop
• ICU for careful fluid monitoring

Special Points
• Pregnancy:
 • ↑fluid ➔ distension of atria ➔ arrhythmias
 • should be fully anticoagulated to prevent VTE
 ➦ convert to heparin
 • elective procedure
 • early epidural with careful topups to
 - prevent loss of preload due to vasoD
 - prevent 2nd stage pain
 • avoid excessive pushing eg forceps assisted delivery
• laproscopic surgery:
 • complications:
 - ↑CO2
 - gas embolism
 • keep pressures <10mmHg to avoid IVC compression & get max VR benefits

Children With Congen Heart Disease for Non Cardiac Surgery

Overview of Circulations
Normal or Series
• separate systemic & pulmon circulations
• = most common type of CHD
• may be pure series or mixed with ASDs & VSDs mixing blood

Parallel or Balance Circulation
• circulations communicate with each other & function as being in parallel
• flow into each circuit depends on relative resistance:
 • ↑PBF ➔ pulmon oedema, ↓systemic perfusion
 • ↓PBF ➔ profound cyanosis
• eg large A-V septal defects or VSDs with L to R shunt:
 - ↑O2 ⇒ ↑PBF ⇒ ↓systemic perfusion & pHTN
 - large induction doses ⇒ ↓SVR ⇒ R to L shunt ⇒ cyanosis

Single Ventricle Circulation
- palliative procedure ⇒ blood flow passing down pressure gradient from VR ⇒ PA ⇒ lungs ⇒ LA
- see Fontan circulation
- Variables which compromise PBF = CVP, PVR, ITP

Risk Stratification

- need to assess:
 - physiological status
 - High risk complex heart disease =
 - single ventricle
 - balance circulation
 - cardiomyopathy
 - AS
 - High risk surgery = intraperitoneal, intrathoracic, vasc reconstructive surgery
 - age
- where is best place to perform surgery:
 - High risk = transfer to specialist centre
 - Low risk = perform locally
 - Intermediate = discuss with specialist centre

Physiological Status
- see history section for repair CHD

Cardiac Failure
- volume overload eg residual shunts, incompetent valves eg post Fallot repair
- pressure overload - residual outflow obstruction
- severe failure very bad sign

pHTN
- Rx:
 - 100% O2
 - inhaled nitric oxide
 - IV prostacyclin
- inotropic support of RV
- support resp tract infections

Arrhythmias
- all children with CHD repair must have preop ECG.
- beware of vent ectopics

Cyanosis
- common feature of unrepaired or partial repair CHD
- high risk group

Management
- balance emergency vs elective & need to transfer child
- anaesthesia plan based on cardiac physiology:
 - septal defects & shunt
 - pHTN
 - type of circulation
 - concurrent medical problems